Advances on Testing and Experimentation in Civil Engineering


Book Description

This book presents the most recent advances on testing and experimentation in civil engineering, especially in the branches of materials, structures, and buildings, complementing the authors’ publication Advances on Testing and Experimentation in Civil Engineering - Geotechnics, Transportation, Hydraulics and Natural Resources. It includes advances in physical modelling, monitoring techniques, data acquisition and analysis, and provides an invaluable contribution to the installation of new civil engineering experimental facilities. The first part of the book covers the latest advances in the testing and experimentation of key domains of materials, such as bio-cementation and self-healing, durability, and recycled materials, as well as the new environmental requirements related to the presence of hazardous substances in construction materials. Furthermore, laboratory and in situ tests, together with equipment needed to estimate the behaviour and durability of construction materials are presented, updating the most important technological advances. The second part of the book highlights the relevance of testing and monitoring in structures, including in situ tests related to static load tests, dynamic tests, and long-term monitoring strategies, as well as laboratory tests of adhesive joints. Experimental tests on shake tables and blast-resistant structures are also described. Recent applications of drone technologies for the inspection and monitoring of civil structures are another important theme developed. Finally, in its third part, the book presents new developments in the characterisation of building testing, with the support of modelling, to assess building pathology and new requirements, acoustic comfort, fire safety, visual comfort, and energy consumption.




Hybrid Simulation


Book Description

Hybrid Simulation: Theory, Implementation and Applications deals with a rapidly evolving technology combining computer simulation (typically finite element) and physical laboratory testing of two complementary substructures. It is a multidisciplinary technology which relies heavily on control theory, computer science, numerical techniques and finds applications in aerospace, civil, and mechanical engineering.










Dynamic Substructures, Volume 4


Book Description

Dynamics of Coupled Structures, Volume 4: Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics, 2020, the fourth volume of eight from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of the Dynamics of Coupled Structures, including papers on: Methods for Dynamic Substructures Applications for Dynamic Substructures Interfaces & Substructuring Frequency Based Substructuring Transfer Path Analysis




Multi-axis Substructure Testing System for Hybrid Simulation


Book Description

This book describes the multi-axis substructure testing (MAST) system, a simulator developed at Swinburne University of Technology, Australia, which provides state-of-the-art technology for large-scale hybrid testing of structures under realistic scenarios depicting extreme events. The book also demonstrates the responses of physical specimens while they serve as part of the virtual computer model of the full structure subjected to extreme dynamic forces. Experimental studies using the MAST system are expected to enhance design and construction methods and significantly improve the repair and retrofitting of structures endangered by natural disasters and man-made hazards, providing a direct benefit to society by improving public safety and the re silience of the built environment. An additional benefit is increased sustainability in the form of reduced direct and indirect economic losses and social and environmental impacts in the face of extreme events. This book will be of interest to researchers and advanced practitioners in the fields of structural earthquake engineering, geotechnical earthquake engineering, engineering seismology, and experimental dynamics, including seismic qualification.




Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing


Book Description

Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing Detailed resource on the “Why,” “What,” and “How” of integrated process modeling, advanced control and data analytics explained via hands-on examples and workshops for optimizing polyolefin manufacturing. Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing discusses, as well as demonstrates, the optimization of polyolefin production by covering topics from polymer process modeling and advanced process control to data analytics and machine learning, and sustainable design and industrial practice. The text also covers practical problems, handling of real data streams, developing the right level of detail, and tuning models to the available data, among other topics, to allow for easy translation of concepts into practice. Written by two highly qualified authors, Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing includes information on: Segment-based modeling of polymer processes; selection of thermodynamic methods; estimation of physical properties for polymer process modeling Reactor modeling, convergence tips and data-fit tool; free radical polymerization (LDPE, EVA and PS), Ziegler-Natta polymerization (HDPE, PP, LLPDE, and EPDM) and ionic polymerization (SBS rubber) Improved polymer process operability and control through steady-state and dynamic simulation models Model-predictive control of polyolefin processes and applications of multivariate statistics and machine learning to optimizing polyolefin manufacturing Integrated Process Modeling, Advanced Control and Data Analytics for Optimizing Polyolefin Manufacturing enables readers to make full use of advanced computer models and latest data analytics and machine learning tools for optimizing polyolefin manufacturing, making it an essential resource for undergraduate and graduate students, researchers, and new and experienced engineers involved in the polyolefin industry.




Computational Methods, Seismic Protection, Hybrid Testing and Resilience in Earthquake Engineering


Book Description

The book is a tribute to the research contribution of Professor Andrei Reinhorn in the field of earthquake engineering. It covers all the aspects connected to earthquake engineering starting from computational methods, hybrid testing and control, resilience and seismic protection which have been the main research topics in the field of earthquake engineering in the last 30 years. These were all investigated by Prof. Reinhorn throughout his career. The book provides the most recent advancements in these four different fields, including contributions coming from six different countries giving an international outlook to the topics.




NASA Technical Paper


Book Description




ERDA Energy Research Abstracts


Book Description