Development of AI-tools for making sense of future complex intelligent systems


Book Description

Artificial intelligence (AI) is increasingly introduced into many systems that modern society rely on and is often portrayed as a savior that can contribute to finding solutions to societal challenges e.g., social, and ecological sustainability. Many of these systems can be classified as complex systems, with interdependencies, emergent behaviors and a diversity of actors involved. As AI is increasingly introduced into these systems, we witness a transformation from complex systems into complex intelligent systems. At the same time caution is invoked toward the risks of AI regarding e.g., biases and loss of control as more tasks are transferred to AI. Hence, the introduction of AI into complex systems is associated with uncertainties around management of AI initiatives and their influence on future systems. Challenges like this can affect many different functions and professions and thus need to be understood collectively. The aim of this thesis is to examine how the actors’ prospective collective sensemaking processes in developing complex systems are affected by AI introduction. Previous research within complex systems literature shows important aspects regarding sensemaking of the system and situations within operations of complex systems. However, sensemaking in the development process of complex systems has been less studied. By examining the introduction of AI in complex systems development this thesis explores collective prospective sensemaking processes in the development of complex intelligent systems. To study an emerging phenomenon like AI introduction in complex systems, an explorative case study was found suitable. The case chosen for the study was a cross-organizational development project of an AI-tool based on Machine Learning for planning of energy systems to be used in the urban planning process of new city districts. This setting revealed plenty prospective and collective sensemaking occasions around AI introduction and exhibited continuous engagement in prospective collective sensemaking relating to the development of the AI tool and the imagined use of the AI tool in the system, which have been reported in the two appended papers. The first paper showed misalignment between actors’ sensemaking processes that alternated between seeking and disengaging behaviors. It also identified the use of boundary objects to retain disengaged actors and raised considerations around the level of detail of the boundary objects in relation to the sensemaking behaviors. The second paper identified dependencies between near- and distant-sensemaking loops that highlight challenges to connect retrospective insights with prospective imaginations by action in the present. In the creation of complex intelligent systems, human involvement seems inevitable, and the second paper exposes how AI can augment human cognition and organizational capabilities for creative imagination around possible and desirable distant-future scenarios. This thesis extends previous research on prospective and collective sensemaking in the development process of complex intelligent systems by presenting a framework of near and distant future sensemaking and internal and external complexity. This provided new insights of how knowledge flows over system levels and how to use boundary objects throughout such projects. Insight that can be useful for management of purposeful AI introduction in complex systems and society. Moreover, it contributes with an empirical case of AI introduction in complex systems to the innovation management literature. Artificiell intelligens (AI) integreras alltmer i de system som vårt moderna samhälle vilar på och framställs ofta som en viktig faktor för att lösa de utmaningar som samhället står inför, till exempel social och ekologisk hållbarhet. Många av dessa system kan definieras som komplexa system, med ömsesidiga beroenden, oförutsedda beteenden och en mångfald av inblandade aktörer. När AI introduceras i sådana system kan vi skönja en transformation från komplexa system till komplexa intelligenta system. Samtidigt påtalas ofta riskerna med AI avseende till exempel partiskhet och minskad kontroll när uppgifter tas över av AI. Införandet av AI i samhällskritiska system förknippas därmed med osäkerheter kring hanteringen av AI-initiativ och dess påverkan på framtiden. Detta leder till utmaningar som berör många olika funktioner och professioner och därmed behöver förstås kollektivt. Syftet med avhandlingen är att undersöka aktörernas framtidsorienterade, gemensamma, meningsskapande processer under utveckling av komplexa system och hur de påverkas av introduktionen av AI. Tidigare forskning inom komplexa system har visat på viktiga aspekter gällande människors förståelse av systemet och situationer framförallt inom driften av komplexa system. Meningsskapande i utvecklingsprocessen av komplexa system har dock hittills inte uppmärksammats i samma utsträckning. Genom att undersöka introduktionen av AI i utvecklingen av komplexa system utforskar denna avhandling kollektiva, framåtblickande, meningsskapande processer inom utvecklingen av komplexa intelligenta system. För studier av ett framväxande fenomen som AI-introduktion i komplexa system ansågs en explorativ fallstudie lämplig. Det valda fallet var ett utvecklingsprojekt av ett AI-verktyg baserat på maskininlärning med syfte att användas i planeringen av energisystem inom stadsplaneringsprocessen av nya stadsdelar och hade flera medverkande organisationer. Fallet visade på flera framtidsorienterade och gemensamma meningsskapande situationer kring AI-introduktion. Därmed synliggjordes de medverkandes kontinuerliga deltagande i framåtblickande gemensamt meningsskapande relaterat till utvecklingen av AI-verktyget och dess tänkta användningen i systemet, vilket rapporterats i de två bilagda artiklarna. Den första artikeln visade att de meningsskapande processerna var ur fas mellan aktörerna, vilka växlade mellan sökande och oengagerade beteenden, och att användningen av gränsöverskridande objekt med rätt detaljnivå kan involvera oengagerade aktörer. Den andra artikeln identifierade beroenden mellan olika meningsskapande cykler, närliggande respektive avlägsen framtid, vilket belyser utmaningar med att koppla tillbakablickande insikter till framåtblickande föreställningar om systemet genom handling i nuet. Vid skapande av komplexa intelligenta system framstår mänsklig inblandning som oundviklig, och den andra artikeln belyser även hur AI kan förstärka mänsklig kognition och organisatoriska förmågor för att främja kreativ föreställningsförmåga kring möjliga och önskvärda scenarier av en avlägsen framtid. Avhandlingen bidrar genom att bredda tidigare forskning om framtidsorienterat och kollektivt meningsskapande i utvecklingsprocessen av komplexa intelligenta system genom att presentera ett ramverk av närliggande och avlägset framåtblickande och intern och extern komplexitet. Det visar på nya insikter om hur kunskap flödar över systemnivåer och gränsöverskridande objekt kan användas under sådana utvecklingsprojekt. Sådana insikter kan vara praktiskt användbara för en välgrundad AI-introduktion i komplexa system och i samhället i stort. Dessutom bidrar den med en empirisk fallstudie av resan mot AI-introduktion i komplexa system till litteraturen inom innovationsledning.




Encyclopedia of Information Science and Technology, Fourth Edition


Book Description

In recent years, our world has experienced a profound shift and progression in available computing and knowledge sharing innovations. These emerging advancements have developed at a rapid pace, disseminating into and affecting numerous aspects of contemporary society. This has created a pivotal need for an innovative compendium encompassing the latest trends, concepts, and issues surrounding this relevant discipline area. During the past 15 years, the Encyclopedia of Information Science and Technology has become recognized as one of the landmark sources of the latest knowledge and discoveries in this discipline. The Encyclopedia of Information Science and Technology, Fourth Edition is a 10-volume set which includes 705 original and previously unpublished research articles covering a full range of perspectives, applications, and techniques contributed by thousands of experts and researchers from around the globe. This authoritative encyclopedia is an all-encompassing, well-established reference source that is ideally designed to disseminate the most forward-thinking and diverse research findings. With critical perspectives on the impact of information science management and new technologies in modern settings, including but not limited to computer science, education, healthcare, government, engineering, business, and natural and physical sciences, it is a pivotal and relevant source of knowledge that will benefit every professional within the field of information science and technology and is an invaluable addition to every academic and corporate library.




Artificial Intelligence


Book Description

Melanie Mitchell separates science fact from science fiction in this sweeping examination of the current state of AI and how it is remaking our world No recent scientific enterprise has proved as alluring, terrifying, and filled with extravagant promise and frustrating setbacks as artificial intelligence. The award-winning author Melanie Mitchell, a leading computer scientist, now reveals AI’s turbulent history and the recent spate of apparent successes, grand hopes, and emerging fears surrounding it. In Artificial Intelligence, Mitchell turns to the most urgent questions concerning AI today: How intelligent—really—are the best AI programs? How do they work? What can they actually do, and when do they fail? How humanlike do we expect them to become, and how soon do we need to worry about them surpassing us? Along the way, she introduces the dominant models of modern AI and machine learning, describing cutting-edge AI programs, their human inventors, and the historical lines of thought underpinning recent achievements. She meets with fellow experts such as Douglas Hofstadter, the cognitive scientist and Pulitzer Prize–winning author of the modern classic Gödel, Escher, Bach, who explains why he is “terrified” about the future of AI. She explores the profound disconnect between the hype and the actual achievements in AI, providing a clear sense of what the field has accomplished and how much further it has to go. Interweaving stories about the science of AI and the people behind it, Artificial Intelligence brims with clear-sighted, captivating, and accessible accounts of the most interesting and provocative modern work in the field, flavored with Mitchell’s humor and personal observations. This frank, lively book is an indispensable guide to understanding today’s AI, its quest for “human-level” intelligence, and its impact on the future for us all.




Preparing for the Future of Artificial Intelligence


Book Description

Advances in Artificial Intelligence (AI) technology have opened up new markets and new opportunities for progress in critical areas such as health, education, energy, and the environment. In recent years, machines have surpassed humans in the performance of certain specific tasks, such as some aspects of image recognition. Experts forecast that rapid progress in the field of specialized artificial intelligence will continue. Although it is very unlikely that machines will exhibit broadly-applicable intelligence comparable to or exceeding that of humans in the next 20 years, it is to be expected that machines will reach and exceed human performance on more and more tasks. As a contribution toward preparing the United States for a future in which AI plays a growing role, this report surveys the current state of AI, its existing and potential applications, and the questions that are raised for society and public policy by progress in AI. The report also makes recommendations for specific further actions by Federal agencies and other actors.




Artificial Intelligence in Healthcare


Book Description

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data







Artificial Intelligence


Book Description

Companies that don't use AI to their advantage will soon be left behind. Artificial intelligence and machine learning will drive a massive reshaping of the economy and society. What should you and your company be doing right now to ensure that your business is poised for success? These articles by AI experts and consultants will help you understand today's essential thinking on what AI is capable of now, how to adopt it in your organization, and how the technology is likely to evolve in the near future. Artificial Intelligence: The Insights You Need from Harvard Business Review will help you spearhead important conversations, get going on the right AI initiatives for your company, and capitalize on the opportunity of the machine intelligence revolution. Catch up on current topics and deepen your understanding of them with the Insights You Need series from Harvard Business Review. Featuring some of HBR's best and most recent thinking, Insights You Need titles are both a primer on today's most pressing issues and an extension of the conversation, with interesting research, interviews, case studies, and practical ideas to help you explore how a particular issue will impact your company and what it will mean for you and your business.




Redesigning AI


Book Description

A look at how new technologies can be put to use in the creation of a more just society. Artificial Intelligence (AI) is not likely to make humans redundant. Nor will it create superintelligence anytime soon. But it will make huge advances in the next two decades, revolutionize medicine, entertainment, and transport, transform jobs and markets, and vastly increase the amount of information that governments and companies have about individuals. AI for Good leads off with economist and best-selling author Daron Acemoglu, who argues that there are reasons to be concerned about these developments. AI research today pays too much attention to the technological hurtles ahead without enough attention to its disruptive effects on the fabric of society: displacing workers while failing to create new opportunities for them and threatening to undermine democratic governance itself. But the direction of AI development is not preordained. Acemoglu argues for its potential to create shared prosperity and bolster democratic freedoms. But directing it to that task will take great effort: It will require new funding and regulation, new norms and priorities for developers themselves, and regulations over new technologies and their applications. At the intersection of technology and economic justice, this book will bring together experts--economists, legal scholars, policy makers, and developers--to debate these challenges and consider what steps tech companies can do take to ensure the advancement of AI does not further diminish economic prospects of the most vulnerable groups of population.




Funding a Revolution


Book Description

The past 50 years have witnessed a revolution in computing and related communications technologies. The contributions of industry and university researchers to this revolution are manifest; less widely recognized is the major role the federal government played in launching the computing revolution and sustaining its momentum. Funding a Revolution examines the history of computing since World War II to elucidate the federal government's role in funding computing research, supporting the education of computer scientists and engineers, and equipping university research labs. It reviews the economic rationale for government support of research, characterizes federal support for computing research, and summarizes key historical advances in which government-sponsored research played an important role. Funding a Revolution contains a series of case studies in relational databases, the Internet, theoretical computer science, artificial intelligence, and virtual reality that demonstrate the complex interactions among government, universities, and industry that have driven the field. It offers a series of lessons that identify factors contributing to the success of the nation's computing enterprise and the government's role within it.




Making Sense of AI


Book Description

Industrial robots, self-driving cars, customer-service chatbots and Google’s algorithmic predictions have brought the topic of artificial intelligence into public debate. Why is AI the source of such intense controversy and what are its economic, political, social and cultural consequences? Tracing the changing fortunes of artificial intelligence, Elliott develops a systematic account of how automated intelligent machines impact different spheres and aspects of public and private life. Among the issues discussed are the automation of workforces, surveillance capitalism, warfare and lethal autonomous weapons, the spread of racist robots and the automation of social inequalities. Elliott also considers the decisive role of AI in confronting global risks and social futures, including global pandemics such as COVID-19, and how smart algorithms are impacting the search for energy security and combating climate change. Making Sense of AI provides a judiciously comprehensive account of artificial intelligence for those with little or no previous knowledge of the topic. It will be an invaluable book both for students in the social sciences and humanities and for general readers.