Book Description
In the manufacture of bio-therapeutics the importance of a well-known process is key for a high product titer and low batch to batch variations. Soft sensors are based on the concept that online sensor signals can be used as inputs to mathematical models to derive new valuable process information. This information could then be used for better monitoring and control of the bioprocess. The aim of the present thesis has been to develop soft sensor solutions for upstream bioprocessing and demonstrate their usefulness in improving robustness and increase the batch-to-batch reproducibility in bioprocesses. The thesis reviews the potential and possibilities with soft sensors for use in production of bio-therapeutics to realize FDA´s process analytical technology (PAT) initiative. Modelling and hardware sensor alternatives which could be used in a soft sensor setup are described and critically analyzed. Different soft sensor approaches to control glucose feeding in fed-batch cultures of Escherichia coli are described. Measurements of metabolic fluxes and specific carbon dioxide production was used as control parameters to increase product yield and decrease the variability of produced recombinant proteins. Metabolic heat signals were used in uninduced cultures to estimate and control the specific growth rate at a desired level and thereby also estimate the biomass concentration online. The introduction of sequential filtering of the signal enabled this method to be used in a down-scaled system. The risk and high impact of contaminations in cell cultures are also described. An in situ microscope (ISM) was used as an online tool to estimate cell concentration and also to determine cell diameter size which enabled the detection of contaminant cells at an early stage. The work presented in this thesis supports the idea that soft sensors can be a useful tool in the strive towards robust and reliable bioprocesses, to ensure high product quality and increased economic profit.