Diamond Turn Machining


Book Description

The goal of this book is to familiarize professionals, researchers, and students with the basics of the Diamond Turn Machining Technology and the various issues involved. The book provides a comprehensive knowledge about various aspects of the technology including the background, components of the machine, mechanism of material removal, application areas, relevant metrology, and advances taking place in this domain. Solved and unsolved examples are provided in each of the areas which will help the readers to practice and get familiarized with that particular area of the Diamond Turn Machining process.




Diamond Turn Machining


Book Description

The goal of this book is to familiarize professionals, researchers, and students with the basics of the Diamond Turn Machining Technology and the various issues involved. The book provides a comprehensive knowledge about various aspects of the technology including the background, components of the machine, mechanism of material removal, application areas, relevant metrology, and advances taking place in this domain. Solved and unsolved examples are provided in each of the areas which will help the readers to practice and get familiarized with that particular area of the Diamond Turn Machining process.




Materials Characterisation and Mechanism of Micro-Cutting in Ultra-Precision Diamond Turning


Book Description

This book presents an in-depth study and elucidation on the mechanisms of the micro-cutting process, with particular emphasis and a novel viewpoint on materials characterization and its influences on ultra-precision machining. Ultra-precision single point diamond turning is a key technology in the manufacture of mechanical, optical and opto-electronics components with a surface roughness of a few nanometers and form accuracy in the sub-micrometric range. In the context of subtractive manufacturing, ultra-precision diamond turning is based on the pillars of materials science, machine tools, modeling and simulation technologies, etc., making the study of such machining processes intrinsically interdisciplinary. However, in contrast to the substantial advances that have been achieved in machine design, laser metrology and control systems, relatively little research has been conducted on the material behavior and its effects on surface finish, such as the material anisotropy of crystalline materials. The feature of the significantly reduced depth of cut on the order of a few micrometers or less, which is much smaller than the average grain size of work-piece materials, unavoidably means that conventional metal cutting theories can only be of limited value in the investigation of the mechanisms at work in micro-cutting processes in ultra-precision diamond turning.




Hybrid Machining


Book Description

Hybrid Machining: Theory, Methods, and Case Studies covers the scientific fundamentals, techniques, applications and real-world descriptions of emerging hybrid machining technology. This field is advancing rapidly in industrial and academic contexts, creating a great need for the fundamental and technical guidance that this book provides. The book includes discussions of basic concepts, process design principles, standard hybrid machining processes, multi-scale modeling approaches, design, on-machine metrology and work handling systems. Readers interested in manufacturing systems, product design or machining technology will find this one-stop guide to hybrid machining the ideal reference. - Includes tables of recommended processing parameters for key engineering materials/products for each hybrid machining process - Provides case studies covering real industrial applications - Explains how to use multiscale modeling for hybrid machining







Principles of Modern Grinding Technology


Book Description

Principles of Modern Grinding Technology, Second Edition, provides insights into modern grinding technology based on the author's 40 years of research and experience in the field. It provides a concise treatment of the principles involved and shows how grinding precision and quality of results can be improved and costs reduced. Every aspect of the grinding process--techniques, machines and machine design, process control, and productivity optimization aspects--come under the searchlight. The new edition is an extensive revision and expansion of the first edition covering all the latest developments, including center-less grinding and ultra-precision grinding. Analyses of factors that influence grinding behavior are provided and applications are presented assisted by numerical examples for illustration. The new edition of this well-proven reference is an indispensible source for technicians, engineers, researchers, teachers, and students who are involved with grinding processes. - Well-proven source revised and expanded by undisputed authority in the field of grinding processes - Coverage of the latest developments, such as ultra-precision grinding machine developments and trends in high-speed grinding - Numerically worked examples give scale to essential process parameters - The book as a whole and in particular the treatment of center-less grinding is considered to be unchallenged by other books




Analysis of Machining and Machine Tools


Book Description

This book provides readers with the fundamental, analytical, and quantitative knowledge of machining process planning and optimization based on advanced and practical understanding of machinery, mechanics, accuracy, dynamics, monitoring techniques, and control strategies that they need to understanding machining and machine tools. It is written for first-year graduate students in mechanical engineering, and is also appropriate for use as a reference book by practicing engineers. It covers topics such as single and multiple point cutting processes; grinding processes; machine tool components, accuracy, and metrology; shear stress in cutting, cutting temperature and thermal analysis, and machine tool chatter. The second section of the book is devoted to “Non-Traditional Machining,” where readers can find chapters on electrical discharge machining, electrochemical machining, laser and electron beam machining, and biomedical machining. Examples of realistic problems that engineers are likely to face in the field are included, along with solutions and explanations that foster a didactic learning experience.







Micro-Cutting


Book Description

Micro-Cutting: Fundamentals and Applications comprehensively covers the state of the art research and engineering practice in micro/nano cutting: an area which is becoming increasingly important, especially in modern micro-manufacturing, ultraprecision manufacturing and high value manufacturing. This book provides basic theory, design and analysis of micro-toolings and machines, modelling methods and techniques, and integrated approaches for micro-cutting. The fundamental characteristics, modelling, simulation and optimization of micro/nano cutting processes are emphasized with particular reference to the predictabilty, producibility, repeatability and productivity of manufacturing at micro and nano scales. The fundamentals of micro/nano cutting are applied to a variety of machining processes including diamond turning, micromilling, micro/nano grinding/polishing, ultraprecision machining, and the design and implementation of micro/nano cutting process chains and micromachining systems. Key features • Contains contributions from leading global experts • Covers the fundamental theory of micro-cutting • Presents applications in a variety of machining processes • Includes examples of how to implement and apply micro-cutting for precision and micro-manufacturing Micro-Cutting: Fundamentals and Applications is an ideal reference for manufacturing engineers, production supervisors, tooling engineers, planning and application engineers, as well as machine tool designers. It is also a suitable textbook for postgraduate students in the areas of micro-manufacturing, micro-engineering and advanced manufacturing methods.




Advances in Manufacturing Processes


Book Description

This book presents the select proceedings of the International Conference on Recent Advances in Manufacturing (RAM 2020). This volume, in particular, provides insights into current research trends and opportunities within the manufacturing processes domain such as conventional and unconventional manufacturing, micro and nano manufacturing, chemical and biochemical manufacturing, and computer-integrated manufacturing (CIM). The topics covered include emerging areas of the fourth industrial revolution such as additive manufacturing, sustainable and energy-efficient manufacturing, smart manufacturing, artificial intelligence in manufacturing application, and computer-integrated manufacturing. This book will be useful for to researchers and practitioners alike.