Computer Organization and Design RISC-V Edition


Book Description

The new RISC-V Edition of Computer Organization and Design features the RISC-V open source instruction set architecture, the first open source architecture designed to be used in modern computing environments such as cloud computing, mobile devices, and other embedded systems. With the post-PC era now upon us, Computer Organization and Design moves forward to explore this generational change with examples, exercises, and material highlighting the emergence of mobile computing and the Cloud. Updated content featuring tablet computers, Cloud infrastructure, and the x86 (cloud computing) and ARM (mobile computing devices) architectures is included. An online companion Web site provides advanced content for further study, appendices, glossary, references, and recommended reading. - Features RISC-V, the first such architecture designed to be used in modern computing environments, such as cloud computing, mobile devices, and other embedded systems - Includes relevant examples, exercises, and material highlighting the emergence of mobile computing and the cloud




Digital Design and Computer Architecture


Book Description

Digital Design and Computer Architecture, Second Edition, takes a unique and modern approach to digital design, introducing the reader to the fundamentals of digital logic and then showing step by step how to build a MIPS microprocessor in both Verilog and VHDL. This new edition combines an engaging and humorous writing style with an updated and hands-on approach to digital design. It presents new content on I/O systems in the context of general purpose processors found in a PC as well as microcontrollers found almost everywhere. Beginning with digital logic gates and progressing to the design of combinational and sequential circuits, the book uses these fundamental building blocks as the basis for the design of an actual MIPS processor. It provides practical examples of how to interface with peripherals using RS232, SPI, motor control, interrupts, wireless, and analog-to-digital conversion. SystemVerilog and VHDL are integrated throughout the text in examples illustrating the methods and techniques for CAD-based circuit design. There are also additional exercises and new examples of parallel and advanced architectures, practical I/O applications, embedded systems, and heterogeneous computing, plus a new appendix on C programming to strengthen the connection between programming and processor architecture. This new edition will appeal to professional computer engineers and to students taking a course that combines digital logic and computer architecture. - Updated based on instructor feedback with more exercises and new examples of parallel and advanced architectures, practical I/O applications, embedded systems, and heterogeneous computing - Presents digital system design examples in both VHDL and SystemVerilog (updated for the second edition from Verilog), shown side-by-side to compare and contrast their strengths - Includes a new chapter on C programming to provide necessary prerequisites and strengthen the connection between programming and processor architecture - Companion Web site includes links to Xilinx CAD tools for FPGA design, lecture slides, laboratory projects, and solutions to exercises - Instructors can also register at textbooks.elsevier.com for access to: Solutions to all exercises (PDF), Lab materials with solutions, HDL for textbook examples and exercise solutions, Lecture slides (PPT), Sample exams, Sample course syllabus, Figures from the text (JPG, PPT)




Digital Design and Computer Architecture, RISC-V Edition


Book Description

The newest addition to the Harris and Harris family of Digital Design and Computer Architecture books, this RISC-V Edition covers the fundamentals of digital logic design and reinforces logic concepts through the design of a RISC-V microprocessor. Combining an engaging and humorous writing style with an updated and hands-on approach to digital design, this book takes the reader from the fundamentals of digital logic to the actual design of a processor. By the end of this book, readers will be able to build their own RISC-V microprocessor and will have a top-to-bottom understanding of how it works. Beginning with digital logic gates and progressing to the design of combinational and sequential circuits, this book uses these fundamental building blocks as the basis for designing a RISC-V processor. SystemVerilog and VHDL are integrated throughout the text in examples illustrating the methods and techniques for CAD-based circuit design. The companion website includes a chapter on I/O systems with practical examples that show how to use SparkFun's RED-V RedBoard to communicate with peripheral devices such as LCDs, Bluetooth radios, and motors. This book will be a valuable resource for students taking a course that combines digital logic and computer architecture or students taking a two-quarter sequence in digital logic and computer organization/architecture. - Covers the fundamentals of digital logic design and reinforces logic concepts through the design of a RISC-V microprocessor - Gives students a full understanding of the RISC-V instruction set architecture, enabling them to build a RISC-V processor and program the RISC-V processor in hardware simulation, software simulation, and in hardware - Includes both SystemVerilog and VHDL designs of fundamental building blocks as well as of single-cycle, multicycle, and pipelined versions of the RISC-V architecture - Features a companion website with a bonus chapter on I/O systems with practical examples that show how to use SparkFun's RED-V RedBoard to communicate with peripheral devices such as LCDs, Bluetooth radios, and motors - The companion website also includes appendices covering practical digital design issues and C programming as well as links to CAD tools, lecture slides, laboratory projects, and solutions to exercises - See the companion EdX MOOCs ENGR85A and ENGR85B with video lectures and interactive problems




Modern Computer Architecture and Organization


Book Description

A no-nonsense, practical guide to current and future processor and computer architectures, enabling you to design computer systems and develop better software applications across a variety of domains Key Features Understand digital circuitry with the help of transistors, logic gates, and sequential logic Examine the architecture and instruction sets of x86, x64, ARM, and RISC-V processors Explore the architecture of modern devices such as the iPhone X and high-performance gaming PCs Book DescriptionAre you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures but overwhelmed by their complexity? This book will help you to learn how modern computer systems work, from the lowest level of transistor switching to the macro view of collaborating multiprocessor servers. You'll gain unique insights into the internal behavior of processors that execute the code developed in high-level languages and enable you to design more efficient and scalable software systems. The book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction operations. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and how to write a quantum computing program and run it on an actual quantum computer. By the end of this book, you will have a thorough understanding of modern processor and computer architectures and the future directions these architectures are likely to take.What you will learn Get to grips with transistor technology and digital circuit principles Discover the functional elements of computer processors Understand pipelining and superscalar execution Work with floating-point data formats Understand the purpose and operation of the supervisor mode Implement a complete RISC-V processor in a low-cost FPGA Explore the techniques used in virtual machine implementation Write a quantum computing program and run it on a quantum computer Who this book is for This book is for software developers, computer engineering students, system designers, reverse engineers, and anyone looking to understand the architecture and design principles underlying modern computer systems from tiny embedded devices to warehouse-size cloud server farms. A general understanding of computer processors is helpful but not required.




Computer Architecture


Book Description

Computer Architecture: A Quantitative Approach, Sixth Edition has been considered essential reading by instructors, students and practitioners of computer design for over 20 years. The sixth edition of this classic textbook from Hennessy and Patterson, winners of the 2017 ACM A.M. Turing Award recognizing contributions of lasting and major technical importance to the computing field, is fully revised with the latest developments in processor and system architecture. The text now features examples from the RISC-V (RISC Five) instruction set architecture, a modern RISC instruction set developed and designed to be a free and openly adoptable standard. It also includes a new chapter on domain-specific architectures and an updated chapter on warehouse-scale computing that features the first public information on Google's newest WSC. True to its original mission of demystifying computer architecture, this edition continues the longstanding tradition of focusing on areas where the most exciting computing innovation is happening, while always keeping an emphasis on good engineering design. - Winner of a 2019 Textbook Excellence Award (Texty) from the Textbook and Academic Authors Association - Includes a new chapter on domain-specific architectures, explaining how they are the only path forward for improved performance and energy efficiency given the end of Moore's Law and Dennard scaling - Features the first publication of several DSAs from industry - Features extensive updates to the chapter on warehouse-scale computing, with the first public information on the newest Google WSC - Offers updates to other chapters including new material dealing with the use of stacked DRAM; data on the performance of new NVIDIA Pascal GPU vs. new AVX-512 Intel Skylake CPU; and extensive additions to content covering multicore architecture and organization - Includes "Putting It All Together" sections near the end of every chapter, providing real-world technology examples that demonstrate the principles covered in each chapter - Includes review appendices in the printed text and additional reference appendices available online - Includes updated and improved case studies and exercises - ACM named John L. Hennessy and David A. Patterson, recipients of the 2017 ACM A.M. Turing Award for pioneering a systematic, quantitative approach to the design and evaluation of computer architectures with enduring impact on the microprocessor industry




The RISC-V Reader


Book Description




Computer Organization and Design


Book Description

Rev. ed. of: Computer organization and design / John L. Hennessy, David A. Patterson. 1998.




Inside the Machine


Book Description

Om hvordan mikroprocessorer fungerer, med undersøgelse af de nyeste mikroprocessorer fra Intel, IBM og Motorola.







Computer Architecture for Scientists


Book Description

The dramatic increase in computer performance has been extraordinary, but not for all computations: it has key limits and structure. Software architects, developers, and even data scientists need to understand how exploit the fundamental structure of computer performance to harness it for future applications. Ideal for upper level undergraduates, Computer Architecture for Scientists covers four key pillars of computer performance and imparts a high-level basis for reasoning with and understanding these concepts: Small is fast – how size scaling drives performance; Implicit parallelism – how a sequential program can be executed faster with parallelism; Dynamic locality – skirting physical limits, by arranging data in a smaller space; Parallelism – increasing performance with teams of workers. These principles and models provide approachable high-level insights and quantitative modelling without distracting low-level detail. Finally, the text covers the GPU and machine-learning accelerators that have become increasingly important for mainstream applications.