Discoveries In Plant Biology (Volume Ii)


Book Description

Scientific progress hinges on continual discovery and the extension of previous discoveries. The important series of volumes Discoveries in Plant Biology is specially compiled to provide a microcosmic atlas of the landmark discoveries that span the breadth of plant biology. Written by renowned plant biologists, the papers describe how classic discoveries were made and how they have served as the basis for subsequent breakthroughs.The 19 chapters in this second volume describe discoveries which contribute to the foundations of modern plant biology. The contributors, many of whom personally lit the way, bring readers back in time as if on a journey to retrace the paths and rethink the ideas they followed. These guided tours on how to decipher the natural laws will lead to an appreciation of the development of each field from simple concepts to an advanced multidisciplinary field of today. This volume will be of special interest to botanists, biochemists, plant physiologists and geneticists, and of general interest to those who are still fascinated by how discoveries are made.




Discoveries in Plant Biology


Book Description

"This excellent book should be present in all central libraries and in those of plant biology institutions. The book is recommended to advanced students and researchers".Journal of Plant Physiology, 1999




Discoveries In Plant Biology (Volume Iii)


Book Description

Scientific progress hinges on continual discovery and the extension of previous discoveries. The important series of volumes Discoveries in Plant Biology is specially compiled to provide a microcosmic atlas of the landmark discoveries that span the breadth of plant biology. Written by renowned plant biologists, the papers describe how classic discoveries were made and how they have served as the basis for subsequent breakthroughs.The 24 chapters in this third volume describe discoveries which contribute to the foundations of modern plant biology. The contributors, many of whom personally lit the way, bring readers back in time as if on a journey to retrace the paths and rethink the ideas they followed. These guided tours on how to decipher the natural laws will lead to an appreciation of the development of each field from simple concepts to an advanced multidisciplinary field of today. This volume will be of special interest to botanists, biochemists, plant physiologists and geneticists, and of general interest to those who are still fascinated by how discoveries are made.







Plant Biology and Biotechnology


Book Description

Plant genomics and biotechnology have recently made enormous strides, and hold the potential to benefit agriculture, the environment and various other dimensions of the human endeavor. It is no exaggeration to claim that the twenty-first century belongs to biotechnology. Knowledge generation in this field is growing at a frenetic pace, and keeping abreast of the latest advances and calls on us to double our efforts. Volume II of this two-part series addresses cutting-edge aspects of plant genomics and biotechnology. It includes 37 chapters contributed by over 70 researchers, each of which is an expert in his/her own field of research. Biotechnology has helped to solve many conundrums of plant life that had long remained a mystery to mankind. This volume opens with an exhaustive chapter on the role played by thale cress, Arabidopsis thaliana, which is believed to be the Drosophila of the plant kingdom and an invaluable model plant for understanding basic concepts in plant biology. This is followed by chapters on bioremediation, biofuels and biofertilizers through microalgal manipulation, making it a commercializable prospect; discerning finer details of biotic stress with plant-fungal interactions; and the dynamics of abiotic and biotic stresses, which also figure elsewhere in the book. Breeding crop plants for desirable traits has long been an endeavor of biotechnologists. The significance of molecular markers, marker assisted selection and techniques are covered in a dedicated chapter, as are comprehensive reviews on plant molecular biology, DNA fingerprinting techniques, genomic structure and functional genomics. A chapter dedicated to organellar genomes provides extensive information on this important aspect. Elsewhere in the book, the newly emerging area of epigenetics is presented as seen through the lens of biotechnology, showcasing the pivotal role of DNA methylation in effecting permanent and transient changes to the genome. Exclusive chapters deal with bioinformatics and systems biology. Handy tools for practical applications such as somatic embryogenesis and micropropagation are included to provide frontline information to entrepreneurs, as is a chapter on somaclonal variation. Overcoming barriers to sexual incompatibility has also long been a focus of biotechnology, and is addressed in chapters on wide hybridization and hybrid embryo rescue. Another area of accomplishing triploids through endosperm culture is included as a non-conventional breeding strategy. Secondary metabolite production through tissue cultures, which is of importance to industrial scientists, is also covered. Worldwide exchange of plant genetic material is currently an essential topic, as is conserving natural resources in situ. Chapters on in vitro conservation of extant, threatened and other valuable germplasms, gene banking and related issues are included, along with an extensive account of the biotechnology of spices – the low-volume, high-value crops. Metabolic engineering is another emerging field that provides commercial opportunities. As is well known, there is widespread concern over genetically modified crops among the public. GM crops are covered, as are genetic engineering strategies for combating biotic and abiotic stresses where no other solutions are in sight. RNAi- and micro RNA- based strategies for crop improvement have proved to offer novel alternatives to the existing non-conventional techniques, and detailed information on these aspects is also included. The book’s last five chapters are devoted to presenting the various aspects of environmental, marine, desert and rural biotechnology. The state-of-the-art coverage on a wide range of plant genomics and biotechnology topics will be of great interest to post-graduate students and researchers, including the employees of seed and biotechnology companies, and to instructors in the fields of plant genetics, breeding and biotechnology.




Plant Physics


Book Description

From Galileo, who used the hollow stalks of grass to demonstrate the idea that peripherally located construction materials provide most of the resistance to bending forces, to Leonardo da Vinci, whose illustrations of the parachute are alleged to be based on his study of the dandelion’s pappus and the maple tree’s samara, many of our greatest physicists, mathematicians, and engineers have learned much from studying plants. A symbiotic relationship between botany and the fields of physics, mathematics, engineering, and chemistry continues today, as is revealed in Plant Physics. The result of a long-term collaboration between plant evolutionary biologist Karl J. Niklas and physicist Hanns-Christof Spatz, Plant Physics presents a detailed account of the principles of classical physics, evolutionary theory, and plant biology in order to explain the complex interrelationships among plant form, function, environment, and evolutionary history. Covering a wide range of topics—from the development and evolution of the basic plant body and the ecology of aquatic unicellular plants to mathematical treatments of light attenuation through tree canopies and the movement of water through plants’ roots, stems, and leaves—Plant Physics is destined to inspire students and professionals alike to traverse disciplinary membranes.




Discoveries in Photosynthesis


Book Description

"Life Is Bottled Sunshine" [Wynwood Reade, Martyrdom of Man, 1924]. This inspired phrase is a four-word summary of the significance of photosynthesis for life on earth. The study of photosynthesis has attracted the attention of a legion of biologists, biochemists, chemists and physicists for over 200 years. Discoveries in Photosynthesis presents a sweeping overview of the history of photosynthesis investigations, and detailed accounts of research progress in all aspects of the most complex bioenergetic process in living organisms. Conceived of as a way of summarizing the history of research advances in photosynthesis as of millennium 2000, the book evolved into a majestic and encyclopedic saga involving all of the basic sciences. The book contains 111 papers, authored by 132 scientists from 19 countries. It includes overviews; timelines; tributes; minireviews on excitation energy transfer, reaction centers, oxygen evolution, light-harvesting and pigment-protein complexes, electron transport and ATP synthesis, techniques and applications, biogenesis and membrane architecture, reductive and assimilatory processes, transport, regulation and adaptation, Genetics, and Evolution; laboratories and national perspectives; and retrospectives that end in a list of photosynthesis symposia, books and conferences. Informal and formal photographs of scientists make it a wonderful book to have. This book is meant not only for the researchers and graduate students, but also for advanced undergraduates in Plant Biology, Microbiology, Cell Biology, Biochemistry, Biophysics and History of Science.




Flora Unveiled


Book Description

This book focuses on how the the scientific discovery of "plant sex" unfolded due to cultural biases, beliefs, and perceptions about plant reproduction. "Flora Unveiled" is a deep history of perceptions about plant gender and sexuality, from the Paleolithic to the nineteenth century. The evidence suggests that a plants-as-female gender bias both prevented the discovery of two sexes in plants until the late 17th century, and delayed its acceptance for another 150 years.




Potato Biology and Biotechnology


Book Description

In the past 15-20 years major discoveries have been concluded on potato biology and biotechnology. Important new tools have been developed in the area of molecular genetics, and our understanding of potato physiology has been revolutionized due to amenability of the potato to genetic transformation. This technology has impacted our understanding of the molecular basis of plant-pathogen interaction and has also opened new opportunities for the use of the potato in a variety of non-food biotechnological purposes. This book covers the potato world market as it expands further into the new millennium. Authors stress the overriding need for stable yields to eliminate human hunger and poverty, while considering solutions to enhance global production and distribution. It comprehensively describes genetics and genetic resources, plant growth and development, response to the environment, tuber quality, pests and diseases, biotechnology and crop management. Potato Biology is the most valuable reference available for all professionals involved in the potato industry, plant biologists and agronomists. Offers an understanding of the social, economic and market factors that influence production and distribution Discusses developments and useful traits in transgenic biology and genetic engineering The first reference entirely devoted to understanding new advances in potato biology and biotechnology