Discrete Structures and Automata Theory


Book Description

Discrete Structures and Automata Theory is designed for an introductory course on formal languages, automata and discrete mathematics. Divided into two parts it covers discrete methods - stressing the finite nature in many problems and structures; combinatorics - the algebra of enumeration or coding and finite algebraic structures - effecting coding theory, method of enumeration, gating networks and combinatorial designs. It also discusses the applications of Automata Theory in Compiler design, Natural Language Processing and development of new programming languages.




Discrete Structure and Automata Theory for Learners


Book Description

Learn to identify the implementation of Discrete Structure and Theory of Automata in a myriad of applications used in day to day lifeKey Featuresa- Learn how to write an argument using logical notation and decide if the argument is valid or not valid.a- Learn how to use the concept of different data structures (stacks, queues, sorting concept, etc.) in the computer science field.a- Learn how to use Automata Machines like FSM, Pushdown automata, Turing machine, etc. in various applications related to computer science through suitable practical illustration.a- Learn how to implement the finite state machine using JFLAP (Java Formal Languages and Automata Package).DescriptionThis book's purpose is to provide a modern and comprehensive introduction to the subject of Discrete Structures and Automata Theory. Discrete structures, also called Discrete Mathematics, are an exciting and active subject, particularly due to its extreme relevance to both Mathematics and Computer Science and Algorithms. This subject forms a common foundation for rigorous Mathematical, Logical Reasoning and Proofs, as well as a formal introduction to abstract objects that are essential tools in an assortment of applications and effective computer implementations. Computing skills are now an integral part of almost all the Scientific fields, and students are very enthusiastic about being able to harness the full computing power of these tools. Further, this book also deep dives into the Automata Theory with various examples that illustrate the basic concepts and is substantiated with multiple diagrams. The book's vital feature is that it contains the practical implementation of the Automata Machine example through the JFLAP Tool. Courses on Discrete Structures and Automata theory are offered at most universities and colleges.What will you learna- Understand the basic concepts of Sets and operations in Sets.a- Demonstrate different traversal techniques for Trees and Graphs.a- Deep dive into the concept of Mathematical Induction, Sets, Relations, Functions, Recursion, Graphs, Trees, Boolean Algebra, and Proof techniques.a- Understand the concept of Automata Machines in day to day life like the Elevator, Turnstile, Genetic Algorithms, Traffic lights, etc.a- Use the JFLAP tool to solve the various exercise problems related to automata theory.Who this book is forThis book is a must-read to everyone interested in improving their concepts regarding Discrete Structure and Automata Theory.Table of Contents1. Set Theory2. Relations and Functions3. Graph Theory4. Trees5. Algebraic Structure6. Recursion and Recurrence Relations7. Sorting8. Queues9. Introduction10. Finite Automata Theory11. Theory of Machines12. Regular Language13. Grammar14. Pushdown Automata15. Cellular Automata16. Turning Machine17. Problems Solving Using JFLAP Tool18. Revision QuestionsAbout the AuthorsDr. UMESH SEHGAL completed his Ph.D.,M.Phil. Computer Science and MCA. He held academic positions at the GNA University as an A.P in FCS Department. He has achieved the Best Educationist Award in 2017.He has achieved the Indira Gandhi Education Excellence Award in 2017.He has achieved the Best Researcher Award in 2018-19.He has published several articles in leading International and National Computer science journals and has been an invited speaker at Wireless networks based lectures and conferences in the many universities and Institutes in India, Malaysia, China, and UAE.SUKHPREET KAUR GILL received the M.Tech. degree in Computer Science and Engineering from Guru Nanak Dev Engineering College, Ludhiana. She is currently working as Assistant Professor at GNA University Phagwara. She has achieved the Bright Educator Award 2019. She has published several articles in leading International and National Computer science journals.




Discrete Mathematical Structures


Book Description

Teaches students the mathematical foundations of computer science, including logic, Boolean algebra, basic graph theory, finite state machines, grammars and algorithms, and helps them understand mathematical reasoning for reading, comprehension and construction of mathematical arguments.




Algebraic Theory of Automata Networks


Book Description

Investigates automata networks as algebraic structures and develops their theory in line with other algebraic theories, such as those of semigroups, groups, rings, and fields. The authors also investigate automata networks as products of automata, that is, as compositions of automata obtained by cascading without feedback or with feedback of various restricted types or, most generally, with the feedback dependencies controlled by an arbitrary directed graph. They survey and extend the fundamental results in regard to automata networks, including the main decomposition theorems of Letichevsky, of Krohn and Rhodes, and of others.




Applied Discrete Structures


Book Description

Applied Discrete Structures, is a two semester undergraduate text in discrete mathematics, focusing on the structural properties of mathematical objects. These include matrices, functions, graphs, trees, lattices and algebraic structures. The algebraic structures that are discussed are monoids, groups, rings, fields and vector spaces. Website: http: //discretemath.org Applied Discrete Structures has been approved by the American Institute of Mathematics as part of their Open Textbook Initiative. For more information on open textbooks, visit http: //www.aimath.org/textbooks/. This version was created using Mathbook XML (https: //mathbook.pugetsound.edu/) Al Doerr is Emeritus Professor of Mathematical Sciences at UMass Lowell. His interests include abstract algebra and discrete mathematics. Ken Levasseur is a Professor of Mathematical Sciences at UMass Lowell. His interests include discrete mathematics and abstract algebra, and their implementation using computer algebra systems.




Problems and Exercises in Discrete Mathematics


Book Description

Many years of practical experience in teaching discrete mathematics form the basis of this text book. Part I contains problems on such topics as Boolean algebra, k-valued logics, graphs and networks, elements of coding theory, automata theory, algorithms theory, combinatorics, Boolean minimization and logical design. The exercises are preceded by ample theoretical background material. For further study the reader is referred to the extensive bibliography. Part II follows the same structure as Part I, and gives helpful hints and solutions. Audience:This book will be of great value to undergraduate students of discrete mathematics, whereas the more difficult exercises, which comprise about one-third of the material, will also appeal to postgraduates and researchers.




Introduction to Discrete Mathematics


Book Description

Discrete Mathematics covers such a wide range of topics that it is difficult to give a simple definition of the subject. Whereas calculus deals with continuous or even smooth objects, discrete mathematics deals with things that come in "chunks" that can be counted. We will be a lot more precise about just what sort of "chunks" we are dealing with in the later chapters. If your mathematical background is only high school calculus you could well believe that mathematics is only about numbers functions and formulas for solving problems. If this is the case, the topics in this book may be quite a surprise because for mathemati­cians, computer scientists and engineers, Discrete Mathematics includes logic, set theory, enumeration, networks, automata, for­mal languages and many other discrete structures. That is what this book is about. On the other hand, in 19 lectures we can only present an introduction to the subject and we must leave other important topics such as graph theory, error-correcting codes, discrete probability theory and applications to theoretical computer science to a sec­ond or third course. The topics covered are set theory, logic, Boolean algebra, count­ing, generating functions, recurrence relations, finite automata and formal languages with a lot of emphasis on counting. The set theory and logic is basic material which will be useful many courses besides Discrete Mathematics. Counting problems which look quite hard when stated in ordinary English can often be solved easily when translated into the language of set theory. We give many examples that reduce to counting the number of functions of various types between sets, or counting the number of subsets of a set.




ADVANCED DISCRETE MATHEMATICS


Book Description

Written in an accessible style, this text provides a complete coverage of discrete mathematics and its applications at an appropriate level of rigour. The book discusses algebraic structures, mathematical logic, lattices, Boolean algebra, graph theory, automata theory, grammars and recurrence relations. It covers the important topics such as coding theory, Dijkstra’s shortest path algorithm, reverse polish notation, Warshall’s algorithm, Menger’s theorem, Turing machine, and LR(k) parsers, which form a part of the fundamental applications of discrete mathematics in computer science. In addition, Pigeonhole principle, ring homomorphism, field and integral domain, trees, network flows, languages, and recurrence relations. The text is supported with a large number of examples, worked-out problems and diagrams that help students understand the theoretical explanations. The book is intended as a text for postgraduate students of mathematics, computer science, and computer applications. In addition, it will be extremely useful for the undergraduate students of computer science and engineering.




Discrete Structures, Logic, and Computability


Book Description

Discrete Structure, Logic, and Computability introduces the beginning computer science student to some of the fundamental ideas and techniques used by computer scientists today, focusing on discrete structures, logic, and computability. The emphasis is on the computational aspects, so that the reader can see how the concepts are actually used. Because of logic's fundamental importance to computer science, the topic is examined extensively in three phases that cover informal logic, the technique of inductive proof; and formal logic and its applications to computer science.