Disinfection Byproducts in Drinking Water


Book Description

The EPA has established regulations which classify four types of disinfection byproducts - TTHMs, haloacetic acids, bromate, and chlorite - and requires public water systems limit these byproducts to specific levels. Most of the information required to comply with these standards is either scattered throughout the literature or derived from confere




Disinfection By-products in Drinking Water


Book Description

Disinfection Byproducts in Drinking Water: Detection and Treatment presents cutting-edge research on how to understand the procedures, processes and considerations for detecting and treating disinfection by-products from drinking water, swimming pool water, and wastewater. The book begins with an overview of the different groups of Disinfection Byproducts (DBPs), such as: Trihalomethanes (THM), Halo acetic acids, and Haloacetonitrile (HAN). This coverage is quickly followed by a clear and rigorous exposition of the latest methods and technologies for the characterization, occurrence, formation, transformation and removal of DBPs in drinking water. Other chapters focus on ultraviolet-visible spectroscopy, electron spin resonance, and gas chromatography-mass spectrometry. Researchers will find a valuable resource to a breath of topics for DBP detection and treatment, including various recent techniques, such as microfiltration, nanofiltration membrane and nanotechnology.




Drinking Water Disinfection Techniques


Book Description

Water is our natural heritage, our miracle of life. However, our increasingly technological society has become indifferent to water. Far from being pure, modern drinking water around the world contains many undesirable chemical and bacterial contaminants. The existing techniques employed for the disinfection of water are either energy-intensive or







Water Disinfection


Book Description

Includes bibliographical references and index.




Disinfection By-products in Drinking Water


Book Description

This book is a collection of chapters on the latest international research findings, including emerging issues and state-of-the-art studies, related to disinfection by-product formation and control in drinking waters and treated wastewaters.







Emerging Organic Contaminants and Human Health


Book Description

This volume provides an overview of the occurrence and fate of emerging contaminants, discusses advanced chemical analysis methods, toxicological and ecotoxicological effects as well as human exposure. One focus is on pharmaceuticals, in particular antibiotics, and the problems associated with their increased use in hospitals. Other covered emerging contaminants occurring e.g. in food, water, air or soil include brominated flame retardants, polar pesticides, phthalates, phosphate esters, perfluorinated compounds, personal care products, musk fragrances, disinfection byproducts, illicit drugs, and nanomaterials. The chapters written by experts are a valuable source of information for a broad audience, such as analytical chemists, environmental chemists and engineers, toxicologists, ecotoxicologists and epidemiologists working already in this field as well as newcomers.




Guidelines for Drinking-water Quality


Book Description

This volume describes the methods used in the surveillance of drinking water quality in the light of the special problems of small-community supplies, particularly in developing countries, and outlines the strategies necessary to ensure that surveillance is effective.




Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment


Book Description

This volume reviews the drinking water treatments in which AOPs display a high application potential. Firstly it reveals the typical supply sources and limitations of conventional technologies and critically reviews natural organic matter characterization and removal techniques, focusing mainly on AOP treatments. It then explores using AOPs for simultaneous inactivation/disinfection of several types of microorganisms, including highly resistant Cryptosporidium protozoa. Lastly, it discusses relevant miscellaneous topics, like the most promising AOP solid catalysts, the regime change of Fenton-like processes toward continuous reactors, the application of chemometrics for process optimization, the impact on disinfection byproducts and the tracing of toxicity during AOP treatments. This work is a useful reference for researchers and students involved in water technologies, including analytical and environmental chemistry, chemical and environmental engineering, toxicology, biotechnology, and related fields. It is intended to encourage industrial and public-health scientists and decision-makers to accelerate the application of AOPs as technological alternatives for the improvement of drinking water treatment plants.