Multi-Drug Resistance in Cancer


Book Description

Chemotherapy is one of the major treatment options for cancer patients; however, the efficacy of chemotherapeutic management of cancer is severely limited by multidrug resistance, in that cancer cells become simultaneously resistant to many structurally and mechanistically unrelated drugs. In the past three decades, a number of mechanisms by which cancer cells acquire multidrug resistance have been discovered. In addition, the development of agents or strategies to overcome resistance has been the subject of intense study. This book contains comprehensive and up-to-date reviews of multidrug resistance mechanisms, from over-expression of ATP-binding cassette drug transporters such as P-glycoprotein, multidrug resistance-associated proteins, and breast cancer resistance p- tein to the drug ratio-dependent antagonism and the paradigm of cancer stem cells. The book also includes strategies to overcome multidrug resistance, from the development of compounds that inhibit drug transporter function to the modulation of transporter expression. In addition, this book contains techniques for the detection and imaging of drug transporters, methods for the investigation of drug resistance in animal models, and strategies to evaluate the efficacy of resistance reversal agents. The book intends to provide a state-of-the-art collection of reviews and methods for both basic and clinician investigators who are interested in cancer multidrug resistance mechanisms and reversal strategies. Tianjin, China Jun Zhou v Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix 1 Multidrug Resistance in Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Bruce C. Baguley 2 Multidrug Resistance in Oncology and Beyond: From Imaging of Drug Efflux Pumps to Cellular Drug Targets . . . . . . . . . . . . . . . . . . . . . . . . . .




Clinically Relevant Resistance in Cancer Chemotherapy


Book Description

Over the last several decades, the introduction of new chemotherapeutic drugs and drug combinations has resulted in increased long term remission rates in several important tumor types. These include childhood leukemia, adult leukemias and lymphomas, as well as testicular and trophoblastic tumors. The addition of high-dose chemotherapy with growth factor and hemopoietic stem cell support has increased clinical remission rates even further. For the majority of patients with some of the more common malignancies, however, palliation (rather than cure) is still the most realistic goal of chemotherapy for metastatic disease. The failure of chemotherapy to cure metastatic cancer is commonly referred to among clinicians as "drug resistance". This phenomenon can, however, often be viewed as the survival of malignant cells that resulted from a failure to deliver an effective drug dose to the (cellular) target because of anyone of or combination of a multitude of individual factors. Clinically, this treatment failure is often viewed as the rapid occurrence of resistance at the single cell level. However, in experimental systems, stable drug resistance is usually relatively slow to emerge.




Breast Cancer Metastasis and Drug Resistance


Book Description

Resistance to therapies, both targeted and systemic, and metastases to distant organs are the underlying causes of breast cancer-associated mortality. The second edition of Breast Cancer Metastasis and Drug Resistance brings together some of the leading experts to comprehensively understand breast cancer: the factors that make it lethal, and current research and clinical progress. This volume covers the following core topics: basic understanding of breast cancer (statistics, epidemiology, racial disparity and heterogeneity), metastasis and drug resistance (bone metastasis, trastuzumab resistance, tamoxifen resistance and novel therapeutic targets, including non-coding RNAs, inflammatory cytokines, cancer stem cells, ubiquitin ligases, tumor microenvironment and signaling pathways such as TRAIL, JAK-STAT and mTOR) and recent developments in the field (epigenetic regulation, microRNAs-mediated regulation, novel therapies and the clinically relevant 3D models). Experts also discuss the advances in laboratory research along with their translational and clinical implications with an overarching goal to improve the diagnosis and prognosis, particularly that of breast cancer patients with advanced disease.




Drug Resistance in Colorectal Cancer: Molecular Mechanisms and Therapeutic Strategies


Book Description

Drug Resistance in Colorectal Cancer: Molecular Mechanisms and Therapeutic Strategies, Volume Eight, summarizes the molecular mechanisms of drug resistance in colorectal cancer, along with the most up-to-date therapeutic strategies available. The book discusses reasons why colorectal tumors become refractory during the progression of the disease, but also explains how drug resistance occurs during chemotherapy. In addition, users will find the current therapeutic strategies used by clinicians in their practice in treating colorectal cancer. The combination of conventional anticancer drugs with chemotherapy-sensitizing agents plays a pivotal role in improving the outcome of colorectal cancer patients, in particular those with drug-resistant cancer cells. From a clinical point-of-view, the content of this book provides clinicians with updated therapeutic strategies for a better choice of drugs for drug-resistant colorectal cancer patients. It will be a valuable source for cancer researchers, oncologists and several members of biomedical field who are dedicated to better treat patients with colorectal cancer.




Principles of Cancer Treatment and Anticancer Drug Development


Book Description

This book explains how current medicines against cancer work and how we find new ones. It provides an easy-to-understand overview of current options to treat patients with cancer, which includes Surgery, Radiation therapy, Chemotherapy, Targeted therapy and Immunotherapy. The efficiency of all these treatments is limited by the capacity of cancer cells to escape therapy. This book explains the mechanisms of anti-cancer drug resistance and strategies to overcome it. The discovery and development process of a new drug is detailed beginning with the identification and validation of a therapeutic target, the identification of an inhibitor of the target and its subsequent preclinical and clinical development until its approval by regulatory authorities. Particular emphasis has been given to specific aspects of the development process including lead generation and optimization, pharmacokinetics, ADME analysis, pharmacodynamics, toxicity and efficacy assessment, investigational new drug (IND) and new drug application (NDA) and the design of clinical trial and their phases. The book covers many aspects of modern personalized oncology and discusses economic aspects of our current system of developing new medicines and its impact on our societies and on future drug research. The author of this book, Dr. Link counts with more than 20 years of experience in biomedical research reflected in numerous publications, patents and key note and plenary presentations at international conferences. Interested readers, students and teachers should read this book as it provides a unique way to learn/teach about basic concepts in oncology and anti-cancer drug research.




Antifolate Drugs in Cancer Therapy


Book Description

In Antifolate Drugs in Cancer Therapy, Ann Jackman and a panel of highly regarded researchers comprehensively review the current status of novel antifolates, an important class of anticancer drugs. The distinguished contributors discuss the preclinical and clinical pharmacology of methotrexate, other dihydrofolate reductase inhibitors, 5-fluorouracil, and the new generation of antifolates-the thymidylate synthase and glycinamide ribonucleotide formyltransferase inhibitors. In addition, they review in depth the modulation of antifolate drugs, folate and antifolate transport mechanisms, polyglutamation, resistance, and drug combinations, as well as pharmacogenomics, pharmacodynamics, regulation of gene expression, and mechanisms of cell death. The wide and progressive scope of Antifolate Drugs in Cancer Therapy provides entré to exciting new avenues for future research, and constitutes a new standard reference for all basic scientists and clinicians engaged in cancer therapeutics.




Drug Repurposing in Cancer Therapy


Book Description

Drug Repurposing in Cancer Therapy: Approaches and Applications provides comprehensive and updated information from experts in basic science research and clinical practice on how existing drugs can be repurposed for cancer treatment. The book summarizes successful stories that may assist researchers in the field to better design their studies for new repurposing projects. Sections discuss specific topics such as in silico prediction and high throughput screening of repurposed drugs, drug repurposing for overcoming chemoresistance and eradicating cancer stem cells, and clinical investigation on combination of repurposed drug and anticancer therapy. Cancer researchers, oncologists, pharmacologists and several members of biomedical field who are interested in learning more about the use of existing drugs for different purposes in cancer therapy will find this to be a valuable resource. - Presents a systematic and up-to-date collection of the research underpinning the various drug repurposing approaches for a quick, but in-depth understanding on current trends in drug repurposing research - Brings better understanding of the drug repurposing process in a holistic way, combining both basic and clinical sciences - Encompasses a collection of successful stories of drug repurposing for cancer therapy in different cancer types




Chemosensitivity Testing in Oncology


Book Description

Over the past 50 years many in vitro and in vivo drug response assay systems have been developed to determine the potential - tivity of chemotherapy agents. The idea was to eliminate ineffective agents and unnecessary toxic treatment while selecting drugs active in vitro or in the mouse model that might increase the probability of response in the patient. None of these test models, however, achieved routine clinical application in the past. This might be at least in part - lated to large discrepancies that were described between the s- cess rate of the assay systems and the clinical benefit in cancer - tients. The heterogeneity of chemosensitivity that exists between different tumors as well as between individual tumor lesions may be one explanation for these findings. Furthermore, different assay end points such as proliferation, metabolism, and vitality were - veloped to evaluate the effects of cytostatic drugs on tumor cells, and these might be related to the differing results. However, knowledge about procedures for assay-assisted treatment selection has increased rapidly within the past few years, and several studies suggest that test-directed chemotherapy selection now may - prove response rates and survival in various types of tumors. The International Society for Chemosensitivity Testing in - cology (ISCO) was founded to promote, coordinate, and improve clinical and laboratory research in the field of predictive drug te- ing in human tumor cells.




Optimal Control of Drug Administration in Cancer Chemotherapy


Book Description

This monograph is a study of optimal control applied to cancer chemotherapy, the treatment of cancer using drugs that kill cancer cells. The aim is to determine whether current methods for the administration of chemotherapy are optimal, and if alternative regimens should be considered.The research utilizes the mathematical theory of optimal control, an active research area for many mathematicians, scientists, and engineers. It is of multidisciplinary nature, having been applied to areas ranging from engineering to biomedicine. The aim in optimal control is to achieve a given objective at minimum cost. A set of differential equations is used to describe the evolution in time of the process being modelled, and constraints limit the policies that can be used to attain the objective.In this monograph, mathematical models are used to construct optimal drug schedules. These are treatment guidelines specifying which drug to deliver, when, and at what dose. Many current drug schedules have been derived empirically, based upon ?rules of thumb?.The monograph has been structured so that most of the high-level mathematics is introduced in a special appendix. In this way, a scientist can skip the more subtle aspects of the theory and still understand the biomedical applications that follow. However, the text is self-contained so that a deeper understanding of the mathematics of optimal control can be gained from the mathematical appendix.The mathematical models in this book and the associated computer simulations show that low intensity chemotherapy is a better choice of treatment than high intensity chemotherapy, under certain conditions.




The Economics of Cancer Care


Book Description

This 2006 book examines the interaction of economics and the delivery of cancer care in the global context. It analyses the causes of tension between those paying for care, those providing the care and those marketing drugs and devices. The concept and requirement for rationing is examined in different economic environments. As cancer increases in incidence and prevalence, the economics of providing care becomes a more important subject than ever before. Written by a leading health economist and oncologist, this was the first comprehensive book on the economics of cancer care continues to be of interest to health professionals and policy makers alike.