DSMC Simulation of Separated Flows about Flared Bodies at Hypersonic Conditions


Book Description

This paper describes the results of a numerical study of interacting hypersonic flows at conditions that can be produced in ground-based test facilities. The computations are made with the direct simulation Monte Carlo (DSMC) method of Bird. The focus is on Mach 10 flows about flared axisymmetric configurations, both hollow cylinder flares and double cones. The flow conditions are those for which experiments have been or will be performed in the ONERA R5Ch low-density wind tunnel and the Calspan-University of Buffalo Research Center (CUBRC) Large Energy National Shock (LENS) tunnel. The range of flow conditions, model configurations, and model sizes provides a significant range of shock/shock and shock/boundary layer interactions at low Reynolds number conditions. Results presented will highlight the sensitivity of the calculations to grid resolution, contrast the difference in flow structure for hypersonic cold flows and those of more energetic but still low enthalpy flows, and compare the present results with experimental measurements for surface heating, pressure, and extent of separation.







Shock Wave-Boundary-Layer Interactions


Book Description

Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.




Coupling of Fluids, Structures and Waves in Aeronautics


Book Description

This volume contains the proceedings of a workshop held in Melbourne, Australia, entitled "Coupling of Fluids, Structures and Waves in Aeronautics". The 22 papers deal with new computational methods for multi-disciplinary design in aeronautics. They are grouped into chapters on fluids, structures, electromagnetics, optimisation, mathematical methods and tools, and aircraft design. Several papers treat coupling of these themes in a multi-physics setting. Included is a 17-page report of a Round Table discussion entitled "Future Tools for Design and Manufacture of Innovative Products in the Aeronautics Industry", together with a summary of important themes and issues. This research promotes the advanced technologies necessary for continued development of efficient and environmentally sustainable transport systems.










Rarefied Gas Dynamics


Book Description

This volume is concerned with the properties and flows of rarefied gases and with the interactions of these gases with solid surfaces and force fields. Topics include: low density aerodynamics, jets, plumes, and propulsion clusters, aerosols, and internal flows and vacuum systems.




Hypersonic Aerothermodynamics


Book Description

A modern treatment of hypersonic aerothermodynamics for students, engineers, scientists, and program managers involved in the study and application of hypersonic flight. It assumes an understanding of the basic principles of fluid mechanics, thermodynamics, compressible flow, and heat transfer. Ten chapters address: general characterization of hypersonic flows; basic equations of motion; defining the aerothermodynamic environment; experimental measurements of hypersonic flows; stagnation-region flowfield; the pressure distribution; the boundary layer and convective heat transfer; aerodynamic forces and moments; viscous interactions; and aerothermodynamics and design considerations. Includes sample exercises and homework problems. Annotation copyright by Book News, Inc., Portland, OR







AIAA Journal


Book Description