Solar System Dynamics


Book Description

The Solar System is a complex and fascinating dynamical system. This is the first textbook to describe comprehensively the dynamical features of the Solar System and to provide students with all the mathematical tools and physical models they need to understand how it works. It is a benchmark publication in the field of planetary dynamics and destined to become a classic. Clearly written and well illustrated, Solar System Dynamics shows how a basic knowledge of the two- and three-body problems and perturbation theory can be combined to understand features as diverse as the tidal heating of Jupiter's moon Io, the origin of the Kirkwood gaps in the asteroid belt, and the radial structure of Saturn's rings. Problems at the end of each chapter and a free Internet Mathematica® software package are provided. Solar System Dynamics provides an authoritative textbook for courses on planetary dynamics and celestial mechanics. It also equips students with the mathematical tools to tackle broader courses on dynamics, dynamical systems, applications of chaos theory and non-linear dynamics.




Dynamical Chaos in Planetary Systems


Book Description

This is the first monograph dedicated entirely to problems of stability and chaotic behaviour in planetary systems and its subsystems. The author explores the three rapidly developing interplaying fields of resonant and chaotic dynamics of Hamiltonian systems, the dynamics of Solar system bodies, and the dynamics of exoplanetary systems. The necessary concepts, methods and tools used to study dynamical chaos (such as symplectic maps, Lyapunov exponents and timescales, chaotic diffusion rates, stability diagrams and charts) are described and then used to show in detail how the observed dynamical architectures arise in the Solar system (and its subsystems) and in exoplanetary systems. The book concentrates, in particular, on chaotic diffusion and clearing effects. The potential readership of this book includes scientists and students working in astrophysics, planetary science, celestial mechanics, and nonlinear dynamics.




Dynamical Chaos in Planetary Systems


Book Description

This is the first monograph dedicated entirely to problems of stability and chaotic behaviour in planetary systems and its subsystems. The author explores the three rapidly developing interplaying fields of resonant and chaotic dynamics of Hamiltonian systems, the dynamics of Solar system bodies, and the dynamics of exoplanetary systems. The necessary concepts, methods and tools used to study dynamical chaos (such as symplectic maps, Lyapunov exponents and timescales, chaotic diffusion rates, stability diagrams and charts) are described and then used to show in detail how the observed dynamical architectures arise in the Solar system (and its subsystems) and in exoplanetary systems. The book concentrates, in particular, on chaotic diffusion and clearing effects. The potential readership of this book includes scientists and students working in astrophysics, planetary science, celestial mechanics, and nonlinear dynamics.




Order and Chaos in Dynamical Astronomy


Book Description

This book is one of the first to provide a general overview of order and chaos in dynamical astronomy. The progress of the theory of chaos has a profound impact on galactic dynamics. It has even invaded celestial mechanics, since chaos was found in the solar system which in the past was considered as a prototype of order. The book provides a unifying approach to these topics from an author who has spent more than 50 years of research in the field. The first part treats order and chaos in general. The other two parts deal with order and chaos in galaxies and with other applications in dynamical astronomy, ranging from celestial mechanics to general relativity and cosmology.




Chaotic Dynamics in Planetary Systems


Book Description

The main theme of the book is the presentation of techniques used to identify chaotic behavior in the evolution of conservative mechanical systems and their application to astronomical systems. It results from graduate courses given by the author over the years both at university and at several international summer schools. Along the book surfaces of section, Lyapunov characteristic exponents, frequency maps, MEGNO, dense grid maps, etc., are presented and discussed in connection with the applications. The initial chapter is devoted to the presentation of the main ideas of the chaotic dynamics of conservative systems in plain language so that they can be accessible to a wide range of professionals and students of physical sciences. The applications are mainly related to the motions in the solar system and extrasolar planetary systems. Another chapter is devoted to the applications to asteroids showing how the asteroidal belt is sculpted by chaos and resonances. The contrasting existence of gaps in the distribution of the asteroids and groups of asteroids in resonances is thoroughly discussed. The interest in applications to planetary systems is growing since the discovery of systems of resonant planets around some stars of the solar neighborhood. Exoplanets added a lot of cases to a problem that was before restricted to the planets of our solar system. The book includes an account of results already existing about compact systems.




Stability and Chaos in Celestial Mechanics


Book Description

This overview of classical celestial mechanics focuses the interplay with dynamical systems. Paradigmatic models introduce key concepts – order, chaos, invariant curves and cantori – followed by the investigation of dynamical systems with numerical methods.




Chaos in Astronomy


Book Description

The conference 'Chaos in Astronomy' was held in Athens on 17-20 Sept. 2007. This book contains edited refereed contributions. It offers an overview to students and newcomers entering various fields of dynamical astronomy.




Chaotic Dynamics


Book Description

A clear introduction to chaotic phenomena for undergraduate students in science, engineering, and mathematics.




Dynamical Chaos


Book Description

The leading scientists who gave these papers under the sponsorship of the Royal Society in early 1987 provide reviews of facets of the subject of chaos ranging from the practical aspects of mirror machines for fusion power to the pure mathematics of geodesics on surfaces of negative curvature. The papers deal with systems in which chaotic conditions arise from initial value problems with unique solutions, as opposed to those where chaos is produced by the introduction of noise from an external source. Table of Contents Diagnosis of Dynamical Systems with Fluctuating Parameters D. Ruelle Nonlinear Dynamics, Chaos, and Complex Cardiac Arrhythmias L. Glass, A. L. Goldberger, M. Courtemanche, and A. Shrier Chaos and the Dynamics of Biological Populations R. M. May Fractal Bifurcation Sets, Renormalization Strange Sets, and Their Universal Invariants D. A. Rand From Chaos to Turbulence in Bnard Convection A. Libchaber Dynamics of Convection N. O. Weiss Chaos: A Mixed Metaphor for Turbulence E. A. Spiegel Arithmetical Theory of Anosov Diffeomorphisms F. Vivaldi Chaotic Behavior in the Solar System J. Wisdom Chaos in Hamiltonian Systems I. C. Percival Semi-Classical Quantization, Adiabatic Invariants, and Classical Chaos W. P. Reinhardt and I. Dana Particle Confinement and Adiabatic Invariance B. V. Chirikov Some Geometrical Models of Chaotic Dynamics C. Series The Bakerian Lecture: Quantum Chaology M. V. Berry Originally published in 1989. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.




Chaos and Complexity in Astrophysics


Book Description

A primer for researchers and graduate students; introduces and applies chaos techniques to specific astrophysical systems.




Recent Books