Dynamics of Bodies with Time-Variable Mass


Book Description

This book deals with the problem of dynamics of bodies with time-variable mass and moment of inertia. Mass addition and mass separation from the body are treated. Both aspects of mass variation, continual and discontinual, are considered. Dynamic properties of the body are obtained applying principles of classical dynamics and also analytical mechanics. Advantages and disadvantages of both approaches are discussed. Dynamics of constant body is adopted, and the characteristics of the mass variation of the body is included. Special attention is given to the influence of the reactive force and the reactive torque. The vibration of the body with variable mass is presented. One and two degrees of freedom oscillators with variable mass are discussed. Rotors and the Van der Pol oscillator with variable mass are displayed. The chaotic motion of bodies with variable mass is discussed too. To support learning, some solved practical problems are included.




Dynamics of Mechanical Systems with Variable Mass


Book Description

The book presents up-to-date and unifying formulations for treating dynamics of different types of mechanical systems with variable mass. The starting point is overview of the continuum mechanics relations of balance and jump for open systems from which extended Lagrange and Hamiltonian formulations are derived. Corresponding approaches are stated at the level of analytical mechanics with emphasis on systems with a position-dependent mass and at the level of structural mechanics. Special emphasis is laid upon axially moving structures like belts and chains and on pipes with an axial flow of fluid. Constitutive relations in the dynamics of systems with variable mass are studied with particular reference to modeling of multi-component mixtures. The dynamics of machines with a variable mass are treated in detail and conservation laws and the stability of motion will be analyzed. Novel finite element formulations for open systems in coupled fluid and structural dynamics are presented.




Mechanics of Flight


Book Description

This comprehensive volume addresses the mechanics of flight through a combination of theory and applications. Topics are presented in a logical order and coverage within each is extensive, including a detailed discussion on the quaterion formulation for six-degree-of-freedom flight.




Dynamics of Machines with Variable Mass


Book Description

Designed to be a complete and integrated text on the dynamic properties of machines, mechanisms, and rotors with variable mass, this book presents new results from investigations based on the general dynamics of systems with variable parameters. The book considers both weak and strong nonlinear vibrations of these systems, and chaotic phenomena are also discussed. The conservation laws and adiabatic invariants for systems with variable mass are formulated and the stability and instability conditions of motion are defined.




Flexible Multibody Dynamics


Book Description

Arun K. Banerjee is one of the foremost experts in the world on the subject of flexible multibody dynamics. This book describes how to build mathermatical models of multibody systems with elastic components. Examples of such systems include the human body itself, construction cranes, cares with trailers, helicopers, spacecraft deploying antennas, tethered satellites, and underwater maneuvering vehicles. This book provides methods of analysis of complex mechanical systems that can be simulated in less computer time than other methods. It equips the reader with knowledge of algorithms that provide accurate results in reduced simulation time.




Variational Principles in Classical Mechanics


Book Description

Two dramatically different philosophical approaches to classical mechanics were proposed during the 17th - 18th centuries. Newton developed his vectorial formulation that uses time-dependent differential equations of motion to relate vector observables like force and rate of change of momentum. Euler, Lagrange, Hamilton, and Jacobi, developed powerful alternative variational formulations based on the assumption that nature follows the principle of least action. These variational formulations now play a pivotal role in science and engineering.This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared. Applications to a wide variety of topics illustrate the intellectual beauty, remarkable power, and broad scope provided by use of variational principles in physics.The second edition adds discussion of the use of variational principles applied to the following topics:(1) Systems subject to initial boundary conditions(2) The hierarchy of related formulations based on action, Lagrangian, Hamiltonian, and equations of motion, to systems that involve symmetries.(3) Non-conservative systems.(4) Variable-mass systems.(5) The General Theory of Relativity.Douglas Cline is a Professor of Physics in the Department of Physics and Astronomy, University of Rochester, Rochester, New York.




Acoustics and Vibration of Mechanical Structures—AVMS 2019


Book Description

This book contains selected and expanded contributions presented at the 15th Conference on Acoustics and Vibration of Mechanical Structures held in Timisoara, Romania, May 30-31, 2019. The conference focused on a broad range of topics related to acoustics and vibration, such as analytical approaches to nonlinear noise and vibration problems, environmental and occupational noise, structural vibration, biomechanics and bioacoustics, as well as experimental approaches to vibration problems in industrial processes. The different contributions also address the analytical, numerical and experimental techniques applicable to analyze linear and non-linear noise and vibration problems (including strong nonlinearity) and they are primarily intended to emphasize the actual trends and state-of-the-art developments in the above mentioned topics. The book is meant for academics, researchers and professionals, as well as PhD students concerned with various fields of acoustics and vibration of mechanical structures.




Dynamics and Control of Advanced Structures and Machines


Book Description

This book presents selected contributions to the 4th International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. The workshop, which was held in Linz, Austria in September 2019, continued a series of international workshops — the Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures, the Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, and the first three editions of the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. The chapters cover a broad spectrum of topics in the field of Advanced Structures and Machines both with respect to theoretical aspects as well as applications to contemporary engineering problems.




Classical Mechanics


Book Description

This is the second volume of three books devoted to Mechanics. In this book, dynamical and advanced mechanics problems are stated, illustrated, and discussed, including a few novel concepts in comparison to standard text books and monographs. Apart from being addressed to a wide spectrum of graduate students, postgraduate students, researchers, and teachers from the fields of mechanical and civil engineering, this volume is also intended to be used as a self-contained material for applied mathematicians and physical scientists and researchers.




Solving Physics Problems


Book Description

This book provides a complete, consistent, and open system for studying physics problems, which not only provides high-quality teaching materials for the field of physics education (especially for Physics Olympiad training) but also points out a new direction for physics education. In this book, a form of methodology, which can comprehensively present cogitation discipline, is built up for analyzing and solving complex physics problems. The text analyzes plenty of physics problems (classical mechanics) from both theoretical and philosophical points of view to reveal the way of exerting this form. As a set of methodology reflecting the cogitation discipline, the thinking paradigm proposed in this book (called the MLQ-(ST)C paradigm) is a theoretical tool to develop people's acquisition of this ability. The paradigm successfully deconstructs the elements and the structure in physical thinking and then eliminates the obstacles of people’s underlying thinking, so that all the thinking built on it can be clear and ordered. The physics problems included in this book are significantly more difficult than similar books within the same theoretical domains involved, leading to better teaching and learning value.