Book Description
Describes methods revealing the structures and dynamics of turbulence for engineering, physical science and mathematics researchers working in fluid dynamics.
Author : Philip Holmes
Publisher : Cambridge University Press
Page : 403 pages
File Size : 11,73 MB
Release : 2012-02-23
Category : Mathematics
ISBN : 1107008255
Describes methods revealing the structures and dynamics of turbulence for engineering, physical science and mathematics researchers working in fluid dynamics.
Author : W. Rodi
Publisher : Elsevier
Page : 1029 pages
File Size : 50,18 MB
Release : 2002-08-21
Category : Mathematics
ISBN : 008053094X
Turbulence is one of the key issues in tackling engineering flow problems. As powerful computers and accurate numerical methods are now available for solving the flow equations, and since engineering applications nearly always involve turbulence effects, the reliability of CFD analysis depends increasingly on the performance of the turbulence models. This series of symposia provides a forum for presenting and discussing new developments in the area of turbulence modelling and measurements, with particular emphasis on engineering-related problems. The papers in this set of proceedings were presented at the 5th International Symposium on Engineering Turbulence Modelling and Measurements in September 2002. They look at a variety of areas, including: Turbulence modelling; Direct and large-eddy simulations; Applications of turbulence models; Experimental studies; Transition; Turbulence control; Aerodynamic flow; Aero-acoustics; Turbomachinery flows; Heat transfer; Combustion systems; Two-phase flows. These papers are preceded by a section containing 6 invited papers covering various aspects of turbulence modelling and simulation as well as their practical application, combustion modelling and particle-image velocimetry.
Author :
Publisher :
Page : 628 pages
File Size : 22,35 MB
Release : 1977
Category : Astronautics
ISBN :
Author : Tim C. Lieuwen
Publisher : Cambridge University Press
Page : 533 pages
File Size : 13,48 MB
Release : 2021-10-21
Category : Science
ISBN : 1108841317
Explore a unified treatment of the dynamics of combustor systems, including acoustics, fluid mechanics, and combustion in a single rigorous text. This updated new edition features an expansion of data and experimental material, updates the coverage of flow stability, and enhanced treatment of flame dynamics. Addresses system dynamics of clean energy and propulsion systems used in low emissions systems. Synthesizing the fields of fluid mechanics and combustion into a coherent understanding of the intrinsically unsteady processes in combustors. This is a perfect reference for engineers and researchers in fluid mechanics, combustion, and clean energy.
Author : Richard W. Johnson
Publisher : Springer Science & Business Media
Page : 1962 pages
File Size : 22,12 MB
Release : 1998-08-18
Category : Technology & Engineering
ISBN : 9783540646129
Providing professionals in the field with a comprehensive guide and resource, this book balances three traditional areas of fluid mechanics - theoretical, computational, and experimental - and expounds on basic science and engineering techniques. Each chapter discusses the primary issues related to the topic in question, outlines expert approaches, and supplies references for further information.
Author : Mohamed Gad-el-Hak
Publisher : Springer Science & Business Media
Page : 533 pages
File Size : 43,48 MB
Release : 2003-07-01
Category : Science
ISBN : 3540696725
No be certain it can is not based mathematics. knowledge if upon da Vinci, (Leonardo 1452 1519) the humankind. Thinking is one greatest of Joys of Galilei, (Galileo 1564 1642) Now I think is to be the root all hydrodynamics and is at of physical science, second the to none in its mathematics. present beauty of Thomson (William (Lord Kelvin), 1824 1907) The book contains the lecture notes of of the nine instructors at present eight the short Flow Control: Fundamentals and which held course was Practices, in the week 24 28 June and Carg6se, Corsica, France, during 1996, repeated at the of Notre 9 13 1996. University Dame, Indiana, September Following the week in the course a on same was held. Corsica, 5 day workshop topic Selected from the scheduled to 1998 workshop are papers appear early special volume of the International Journal Heat Thermo of Experimental Transfer, and Fluid All Mechanics. three events were Jean Paul dynamics, organized by Bonnet of Universit6 de Andrew Pollard of Univer Poitiers, France, Queen's at and Mohamed Gad el Hak of the of sity Kingston, Canada, University Notre U.S.A.
Author :
Publisher :
Page : 400 pages
File Size : 30,26 MB
Release : 1948
Category : Mechanics, Applied
ISBN :
Author : D. Emerson
Publisher : Elsevier
Page : 697 pages
File Size : 31,33 MB
Release : 1998-04-17
Category : Computers
ISBN : 0080538371
Computational Fluid Dynamics (CFD) is a discipline that has always been in the vanguard of the exploitation of emerging and developing technologies. Advances in both algorithms and computers have rapidly been absorbed by the CFD community in its quest for more accurate simulations and reductions in the time to solution. Within this context, parallel computing has played an increasingly important role. Moreover, the uptake of parallel computing has brought the CFD community into ever-closer contact with hardware vendors and computer scientists. The multidisciplinary subject of parallel CFD and its rapidly evolving nature, in terms of hardware and software, requires a regular international meeting of this nature to keep abreast of the most recent developments. Parallel CFD '97 is part of an annual conference series dedicated to the discussion of recent developments and applications of parallel computing in the field of CFD and related disciplines. This was the 9th in the series, and since the inaugural conference in 1989, many new developments and technologies have emerged. The intervening years have also proved to be extremely volatile for many hardware vendors and a number of companies appeared and then disappeared. However, the belief that parallel computing is the only way forward has remained undiminished. Moreover, the increasing reliability and acceptance of parallel computers has seen many commercial companies now offering parallel versions of their codes, many developed within the EC funded EUROPORT activity, but generally for more modest numbers of processors. It is clear that industry has not moved to large scale parallel systems but it has shown a keen interest in more modest parallel systems recognising that parallel computing will play an important role in the future. This book forms the proceedings of the CFD '97 conference, which was organised by the the Computational Engineering Group at Daresbury Laboratory and held in Manchester, England, on May 19-21 1997. The sessions involved papers on many diverse subjects including turbulence, reactive flows, adaptive schemes, unsteady flows, unstructured mesh applications, industrial applications, developments in software tools and environments, climate modelling, parallel algorithms, evaluation of computer architectures and a special session devoted to parallel CFD at the AEREA research centres. This year's conference, like its predecessors, saw a continued improvement in both the quantity and quality of contributed papers. Since the conference series began many significant milestones have been acheived. For example in 1994, Massively Parallel Processing (MPP) became a reality with the advent of Cray T3D. This, of course, has brought with it the new challenge of scalability for both algorithms and architectures. In the 12 months since the 1996 conference, two more major milestones were achieved: microprocessors with a peak performance of a Gflop/s became available and the world's first Tflop/s calculation was performed. In the 1991 proceedings, the editors indicated that a Tflop/s computer was likely to be available in the latter half of this decade. On December 4th 1996, Intel achieved this breakthrough on the Linpack benchmark using 7,264 (200MHz) Pentium Pro microprocessors as part of the ASCI Red project. With the developments in MPP, the rapid rise of SMP architectures and advances in PC technology, the future for parallel CFD looks both promising and challenging.
Author : Chiao-ling Lin
Publisher : Elsevier
Page : 549 pages
File Size : 43,92 MB
Release : 1999-05-26
Category : Mathematics
ISBN : 0080538398
This book contains the papers presented at the Parallel Computational Fluid Dynamics 1998 Conference. The book is focused on new developments and applications of parallel technology. Key topics are introduced through contributed papers and invited lectures. These include typical algorithmic developments, such as: distributed computing, domain decomposition and parallel algorithm. Some of the papers address the evaluations of software and machine performance and software tool environments. The application of parallel computers to complex fluid dynamics problems are also conveyed through sessions such as DNS/LES, combustion and reacting flows, industrial applications, water resources and environmental flows.The editors believe this book will provide many researchers, much beyond those contributing to this volume, with fresh information and reference.
Author : J.P. Bonnet
Publisher : Springer Science & Business Media
Page : 504 pages
File Size : 29,69 MB
Release : 2012-12-06
Category : Technology & Engineering
ISBN : 9401120986
The existence and crucial role played by large-scale, organized motions in turbulent flows are now recognized by industrial, applied and fundamental researchers alike. It has become increasingly evident that coherent structures influence mixing, noise, vibration, heat transfer, drag, etc... The accelera tion of the development of both experimental and computational programs devoted to this topic has been evident at several recent international meet ings. One of the first questions which experimentalists or numerical analysts are faced with is: how can these structures be separated from the background turbulence? This is a nontrivial task because the coherent structures are gen erally embedded in a random field and the technique used to determine when and where certain structures are passing, or their averaged characteristics (in the more probable or dominant role sense) is directly related to the definition of the coherent structure. Several methods or approaches are available and the choice of a particular one is generally dependent on the desired informa tion. This choice depends not only on the definition of the structure, but also on the experimental and numerical capabilities available to the researcher.