Transcendental Dynamics and Complex Analysis


Book Description

Presenting papers by researchers in transcendental dynamics and complex analysis, this exciting new and modern book is written in honor of Noel Baker, who laid the foundations of transcendental complex dynamics. The papers describe the state of the art in this subject, with new results on completely invariant domains, wandering domains, the exponential parameter space, and normal families. The inclusion of comprehensive survey articles on dimensions of Julia sets, buried components of Julia sets, Baker domains, Fatou components of functions of small growth, and ergodic theory of transcendental meromorphic functions means this is essential reading for students and researchers in complex dynamics and complex analysis.




Dynamics of Transcendental Functions


Book Description

In this extensive work, the authors give a complete self-contained exposition on the subject of classic function theory and the most recent developments in transcendental iteration. They clearly present the theory of iteration of transcendental functions and their analytic and geometric aspects. Attention is concentrated for the first time on the d




Finite or Infinite Dimensional Complex Analysis


Book Description

This volume presents the proceedings of the Seventh International Colloquium on Finite or Infinite Dimensional Complex Analysis held in Fukuoka, Japan. The contributions offer multiple perspectives and numerous research examples on complex variables, Clifford algebra variables, hyperfunctions and numerical analysis.




Holomorphic Dynamical Systems


Book Description

The theory of holomorphic dynamical systems is a subject of increasing interest in mathematics, both for its challenging problems and for its connections with other branches of pure and applied mathematics. A holomorphic dynamical system is the datum of a complex variety and a holomorphic object (such as a self-map or a vector ?eld) acting on it. The study of a holomorphic dynamical system consists in describing the asymptotic behavior of the system, associating it with some invariant objects (easy to compute) which describe the dynamics and classify the possible holomorphic dynamical systems supported by a given manifold. The behavior of a holomorphic dynamical system is pretty much related to the geometry of the ambient manifold (for instance, - perbolic manifolds do no admit chaotic behavior, while projective manifolds have a variety of different chaotic pictures). The techniques used to tackle such pr- lems are of variouskinds: complexanalysis, methodsof real analysis, pluripotential theory, algebraic geometry, differential geometry, topology. To cover all the possible points of view of the subject in a unique occasion has become almost impossible, and the CIME session in Cetraro on Holomorphic Dynamical Systems was not an exception.




Early Days in Complex Dynamics


Book Description

The theory of complex dynamics, whose roots lie in 19th-century studies of the iteration of complex function conducted by Koenigs, Schoder, and others, flourished remarkably during the first half of the 20th century, when many of the central ideas and techniques of the subject developed. This book paints a robust picture of the field of complex dynamics between 1906 and 1942 through detailed discussions of the work of Fatou, Julia, Siegel, and several others.




Proceedings of the Second International Conference on Structural Stability and Dynamics


Book Description

ICSSD 2002 is the second in the series of International Conferences on Structural Stability and Dynamics, which provides a forum for the exchange of ideas and experiences in structural stability and dynamics among academics, engineers, scientists and applied mathematicians. Held in the modern and vibrant city of Singapore, ICSSD 2002 provides a peep at the areas which experts on structural stability and dynamics will be occupied with in the near future. From the technical sessions, it is evident that well-known structural stability and dynamic theories and the computational tools have evolved to an even more advanced stage. Many delegates from diverse lands have contributed to the ICSSD 2002 proceedings, along with the participation of colleagues from the First Asian Workshop on Meshfree Methods and the International Workshop on Recent Advances in Experiments and Computations on Modeling of Heterogeneous Systems. Forming a valuable source for future reference, the proceedings contain 153 papers OCo including 3 keynote papers and 23 invited papers OCo contributed by authors from all over the world who are working in advanced multi-disciplinary areas of research in engineering. All these papers are peer-reviewed, with excellent quality, and cover the topics of structural stability, structural dynamics, computational methods, wave propagation, nonlinear analysis, failure analysis, inverse problems, non-destructive evaluation, smart materials and structures, vibration control and seismic responses.The major features of the book are summarized as follows: a total of 153 papers are included with many of them presenting fresh ideas and new areas of research; all papers have been peer-reviewed and are grouped into sections for easy reference; wide coverage of research areas is provided and yet there is good linkage with the central topic of structural stability and dynamics; the methods discussed include those that are theoretical, analytical, computational, artificial, evolutional and experimental; the applications range from civil to mechanical to geo-mechanical engineering, and even to bioengineering."




Thermodynamic Formalism


Book Description

This volume arose from a semester at CIRM-Luminy on “Thermodynamic Formalism: Applications to Probability, Geometry and Fractals” which brought together leading experts in the area to discuss topical problems and recent progress. It includes a number of surveys intended to make the field more accessible to younger mathematicians and scientists wishing to learn more about the area. Thermodynamic formalism has been a powerful tool in ergodic theory and dynamical system and its applications to other topics, particularly Riemannian geometry (especially in negative curvature), statistical properties of dynamical systems and fractal geometry. This work will be of value both to graduate students and more senior researchers interested in either learning about the main ideas and themes in thermodynamic formalism, and research themes which are at forefront of research in this area.




Proceedings of the Second ISAAC Congress


Book Description

This book is the Proceedings of the Second ISAAC Congress. ISAAC is the acronym of the International Society for Analysis, its Applications and Computation. The president of ISAAC is Professor Robert P. Gilbert, the second named editor of this book, e-mail: [email protected]. The Congress is world-wide valued so highly that an application for a grant has been selected and this project has been executed with Grant No. 11-56 from *the Commemorative Association for the Japan World Exposition (1970). The finance of the publication of this book is exclusively the said Grant No. 11-56 from *. Thus, a pair of each one copy of two volumes of this book will be sent to all contributors, who registered at the Second ISAAC Congress in Fukuoka, free of charge by the Kluwer Academic Publishers. Analysis is understood here in the broad sense of the word, includ ing differential equations, integral equations, functional analysis, and function theory. It is the purpose of ISAAC to promote analysis, its applications, and its interaction with computation. With this objective, ISAAC organizes international Congresses for the presentation and dis cussion of research on analysis. ISAAC welcomes new members and those interested in joining ISAAC are encouraged to look at the web site http://www .math. udel.edu/ gilbert/isaac/index.html vi and http://www.math.fu-berlin.de/ rd/ ag/isaac/newton/index.html.




Handbook of Dynamical Systems


Book Description

In this volume, the authors present a collection of surveys on various aspects of the theory of bifurcations of differentiable dynamical systems and related topics. By selecting these subjects, they focus on those developments from which research will be active in the coming years. The surveys are intended to educate the reader on the recent literature on the following subjects: transversality and generic properties like the various forms of the so-called Kupka-Smale theorem, the Closing Lemma and generic local bifurcations of functions (so-called catastrophe theory) and generic local bifurcations in 1-parameter families of dynamical systems, and notions of structural stability and moduli. - Covers recent literature on various topics related to the theory of bifurcations of differentiable dynamical systems - Highlights developments that are the foundation for future research in this field - Provides material in the form of surveys, which are important tools for introducing the bifurcations of differentiable dynamical systems




Complex Analysis And Potential Theory - Proceedings Of The Conference Satellite To Icm 2006


Book Description

This volume gathers the contributions from outstanding mathematicians, such as Samuel Krushkal, Reiner Kühnau, Chung Chun Yang, Vladimir Miklyukov and others.It will help researchers to solve problems on complex analysis and potential theory and discuss various applications in engineering. The contributions also update the reader on recent developments in the field. Moreover, a special part of the volume is completely devoted to the formulation of some important open problems and interesting conjectures.