The Defocusing Nonlinear Schr?dinger Equation


Book Description

Bose?Einstein condensation is a phase transition in which a fraction of particles of a boson gas condenses into the same quantum state known as the Bose?Einstein condensate (BEC). The aim of this book is to present a wide array of findings in the realm of BECs and on the nonlinear Schr?dinger-type models that arise therein.?The Defocusing Nonlinear Schr?dinger Equation?is a broad study of nonlinear?excitations in self-defocusing nonlinear media. It summarizes state-of-the-art knowledge on the defocusing nonlinear Schr?dinger-type models in a single volume and contains a wealth of resources, including over 800 references to relevant articles and monographs and a meticulous index for ease of navigation.




Bose-Einstein Condensation


Book Description

Bose-Einstein Condensation represents a new state of matter and is one of the cornerstones of quantum physics, resulting in the 2001 Nobel Prize. Providing a useful introduction to one of the most exciting field of physics today, this text will be of interest to a growing community of physicists, and is easily accessible to non-specialists alike.




Spontaneous Symmetry Breaking, Self-Trapping, and Josephson Oscillations


Book Description

This volume collects a a number of contributions on spontaneous symmetry breaking. Current studies in this general field are going ahead at a full speed. The book present review chapters which give an overview on the major break throughs of recent years. It covers a number of different physical settings which are introduced when a nonlinearity is added to the underlying symmetric problems and its strength exceeds a certain critical value. The corresponding loss of symmetry, called spontaneous symmetry breaking, alias self-trapping into asymmetric states is extensively discussed in this book. The book presents both active theoretical studies of spontaneous symmetry breaking effects as well as experimental findings, chiefly for Bose-Einstein-Condensates with the self-repulsive nonlinearity, and also for photorefractive media in optics.




Collected Papers of Carl Wieman


Book Description

Carl Wieman's contributions have had a major impact on defining the field of atomic physics as it exists today. His ground-breaking research has included precision laser spectroscopy; using lasers and atoms to provide important table-top tests of theories of elementary particle physics; the development of techniques to cool and trap atoms using laser light, particularly in inventing much simpler, less expensive ways to do this; the understanding of how atoms interact with one another and light at ultracold temperatures; and the creation of the first Bose-Einstein condensation in a dilute gas, and the study of the properties of this condensate. In recent years, he has also turned his attention to physics education and new methods and research in that area. This indispensable volume presents his collected papers, with annotations from the author, tracing his fascinating research path and providing valuable insight about the significance of the works.




Emergent Nonlinear Phenomena in Bose-Einstein Condensates


Book Description

This book, written by experts in the fields of atomic physics and nonlinear science, covers the important developments in a special aspect of Bose-Einstein condensation, namely nonlinear phenomena in condensates. Topics covered include bright, dark, gap and multidimensional solitons; vortices; vortex lattices; optical lattices; multicomponent condensates; mathematical methods/rigorous results; and the beyond-the-mean-field approach.




Progress in Optics


Book Description

In this volume, six review articles which cover a broad range of topics of current interest in modern optics are included. The first article by S. Saltiel, A.A. Sukhorukov and Y.S. Kivshar presents an overview of various types of parametric interactions in nonlinear optics which are associated with simultaneous phase-matching of several optical processes in quadratic non-linear media, the so-called multi-step parametric interactions. The second article by H.E. Tureci, H.G.L. Schwefel, Ph. Jacquod and A.D. Stone reviews the progress that has been made in recent years in the understanding of modes in wave-chaotic systems. The next article by C.P. Search and P. Meystre reviews some important recent developments in non-linear optics and in quantum optics. The fourth article by E. Hasman, G. Biener, A. Niv and V. Kleiner discusses space-variant polarization manipulation. The article reviews both theoretical analysis and experimental techniques. The article which follows, by A.S. Desyatnikov, L. Torner and Y.S. Kivshar presents an overview of recent researches on optical vortices and phase singularities of electromagnetic waves in different types of non-linear media, with emphasis on the properties of vortex solitons. The concluding article by K. Iwata presents a review of imaging techniques with X-rays and visible light in which phase of the radiation that penetrates through a transparent object plays an important part.




Introduction to Frustrated Magnetism


Book Description

The field of highly frustrated magnetism has developed considerably and expanded over the last 15 years. Issuing from canonical geometric frustration of interactions, it now extends over other aspects with many degrees of freedom such as magneto-elastic couplings, orbital degrees of freedom, dilution effects, and electron doping. Its is thus shown here that the concept of frustration impacts on many other fields in physics than magnetism. This book represents a state-of-the-art review aimed at a broad audience with tutorial chapters and more topical ones, encompassing solid-state chemistry, experimental and theoretical physics.




Manipulating Quantum Systems


Book Description

The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.




The Nonlinear Schrödinger Equation


Book Description

Filling the gap between the mathematical literature and applications to domains, the authors have chosen to address the problem of wave collapse by several methods ranging from rigorous mathematical analysis to formal aymptotic expansions and numerical simulations.




Dynamics and Thermodynamics of Systems with Long Range Interactions


Book Description

Properties of systems with long range interactions are still poorly understood despite being of importance in most areas of physics. The present volume introduces and reviews the effort of constructing a coherent thermodynamic treatment of such systems by combining tools from statistical mechanics with concepts and methods from dynamical systems. Analogies and differences between various systems are examined by considering a large range of applications, with emphasis on Bose--Einstein condensates. Written as a set of tutorial reviews, the book will be useful for both the experienced researcher as well as the nonexpert scientist or postgraduate student.