Dynamics of Vortex Structures in a Stratified Rotating Fluid


Book Description

This book presents an extensive analysis of the dynamics of discrete and distributed baroclinic vortices in a multi-layer fluid that characterizes the main features of the large and mesoscales dynamics of the atmosphere and the ocean. It widely covers the case of hetonic situations as well as the case of intrathermocline vortices that are familiar in oceanographic and of recognized importance for heat and mass transfers. Extensive typology of such baroclinic eddies is made and analysed with the help of theoretical development and numerical computations. As a whole it gives an overview and synthesis of all the many situations that can be encountered based on the long history of the theory of vortex motion and on many new situations. It gives a renewed insight on the extraordinary richness of vortex dynamics and open the way for new theoretical, observational and experimental advances. This volume is of interest to experts in physical oceanography, meteorology, hydrodynamics, dynamic systems, involved in theoretical, experimental and applied research and lecturers, post-graduate students, and students in these fields.




Vorticity and Vortex Dynamics


Book Description

This book is a comprehensive and intensive monograph for scientists, engineers and applied mathematicians, as well as graduate students in fluid dynamics. It starts with a brief review of fundamentals of fluid dynamics, with an innovative emphasis on the intrinsic orthogonal decomposition of fluid dynamic process, by which one naturally identifies the content and scope of vorticity and vortex dynamics. This is followed by a detailed presentation of vorticity dynamics as the basis of later development. In vortex dynamics part the book deals with the formation, motion, interaction, stability, and breakdown of various vortices. Typical vortex structures are analyzed in laminar, transitional, and turbulent flows, including stratified and rotational fluids. Physical understanding of vertical flow phenomena and mechanisms is the first priority throughout the book. To make the book self-contained, some mathematical background is briefly presented in the main text, but major prerequisites are systematically given in appendices. Material usually not seen in books on vortex dynamics is included, such as geophysical vortex dynamics, aerodynamic vortical flow diagnostics and management.




Vortex Structures in a Stratified Fluid


Book Description

A fully systematic treatment of the dynamics of vortex structures and their interactions in a viscous density stratified fluid is provided by this book. The various compact vortex structures such as monopoles, dipoles, quadrupoles, as well as more complex ones are considered theoretically from a physical point of view. Another essential feature of the book is the close combination of theoretical analyses with numerous examples of real flows. The book further provides real physical insight and base for postgraduate students specializing in geophysical and applied fluid dynamics. Among the family of vortex structures considered in the book, the most remarkable are the vortex dipoles. These are fundamental elements of the complex chaotic flows associated with the term 'two-dimensional turbulence'. The appearance of these structures in initially chaotic flows is currently of great interest because of a myriad of geophysical applications. Specific examples include the mushroom-like currents discovered from satellite images of the upper ocean. The book is well illustrated with many original photographs (some in colour) and diagrams.




Vortex Structures in Fluid Dynamic Problems


Book Description

The contents of the book cover topics on vortex dynamics in a variety of flow problems and describe observational measurements and their interpretation. The book contains 13 chapters that first include vortices in the earth and planetary sciences related to vortices in the Venus plasma wake and also on tropical cyclones and on rotating shallow water in the earth's atmosphere. Vortices in fluid problems include airplane wake vortices, vorticity evolution in free-shear flows, together with axisymmetric flows with swirl, as well as thermal conductivities in fluid layers. Vortices in relativistic fluids, in magnetic disks, solitons and vortices, and relaxation for point vortices were also examined. Other chapters describe conditions in a vortex bioreactor and in vortex yarn structures.




Turbulence Structure and Vortex Dynamics


Book Description

Edited volume on turbulence, first published in 2000.




Vortex Structures in Fluid Dynamic Problems


Book Description

The contents of the book cover topics on vortex dynamics in a variety of flow problems and describe observational measurements and their interpretation. The book contains 13 chapters that first include vortices in the earth and planetary sciences related to vortices in the Venus plasma wake and also on tropical cyclones and on rotating shallow water in the earth's atmosphere. Vortices in fluid problems include airplane wake vortices, vorticity evolution in free-shear flows, together with axisymmetric flows with swirl, as well as thermal conductivities in fluid layers. Vortices in relativistic fluids, in magnetic disks, solitons and vortices, and relaxation for point vortices were also examined. Other chapters describe conditions in a vortex bioreactor and in vortex yarn structures.




Coherent Vortex Structures in Fluids and Plasmas


Book Description

This monograph introduces readers to the hydrodynamics of vortex formation, and reviews the last decade of active research in the field, offering a unique focus on research topics at the crossroads of traditional fluids and plasmas. Vortices are responsible for the process of macroscopic transport of momentum, energy and mass, and are formed as the result of spontaneous self-organization. Playing an important role in nature and technology, localized, coherent vortices are regularly observed in shear flows, submerged jets, afterbody flows and in atmospheric boundary layers, sometimes taking on the form of vortex streets. In addition, the book addresses a number of open issues, including but not limited to: which singularities are permitted in a 2D Euler equation besides point vortices? Which other, even more complex, localized vortices could be contained in the Euler equation? How do point vortices interact with potential waves?




Fluid Vortices


Book Description

Fluid Vortices is a comprehensive, up-to-date, research-level overview covering all salient flows in which fluid vortices play a significant role. The various chapters have been written by specialists from North America, Europe and Asia, making for unsurpassed depth and breadth of coverage. Topics addressed include fundamental vortex flows (mixing layer vortices, vortex rings, wake vortices, vortex stability, etc.), industrial and environmental vortex flows (aero-propulsion system vortices, vortex-structure interaction, atmospheric vortices, computational methods with vortices, etc.), and multiphase vortex flows (free-surface effects, vortex cavitation, and bubble and particle interactions with vortices). The book can also be recommended as an advanced graduate-level supplementary textbook. The first nine chapters of the book are suitable for a one-term course; chapters 10--19 form the basis for a second one-term course.




Vortex Dynamics and Vortex Methods


Book Description

Understanding vortex dynamics is the key to understanding much of fluid dynamics. For this reason, many researchers, using a great variety of different approaches--analytical, computational, and experimental--have studied the dynamics of vorticity. The AMS-SIAM Summer Seminar on Vortex Dynamics and Vortex Methods, held in June 1990 at the University of Washington in Seattle, brought together experts with a broad range of viewpoints and areas of specialization. This volume contains the proceedings from that seminar. The focus here is on the numerical computation of high Reynolds number incompressible flows. Also included is a smaller selection of important experimental results and analytic treatments. Many of the articles contain valuable introductory and survey material as well as open problems. Readers will appreciate this volume for its coverage of a wide variety of numerical, analytical, and experimental tools and for its treatment of interesting important discoveries made with these tools.




Vortex Dynamics


Book Description

This book discusses vortex dynamics theory from physics, mathematics, and engineering perspectives. It includes nine chapters that cover a variety of research results related to vortex dynamics including nonlinear optics, fluid dynamics, and plasma physics.