Effect of Pressure Gradients on Plate Response and Radiation in a Supersonic Turbulent Boundary Layer


Book Description

Using the model developed by the author for zero-pressure gradient turbulent boundary layers, results are obtained for adverse and favorable pressure gradients. It is shown that when a flexible plate is located in an adverse pressure gradient area, it vibrates more than if it were in a favorable pressure gradient one. Therefore the noise generated by the plate in an adverse pressure gradient is much greater than that due to the plate in a favorable pressure gradient. The effects of Reynolds number and boundary layer thickness are also analyzed and found to have the same effect in both adverse and favorable pressure gradient cases. Increasing the Reynolds number is found to increase the loading on the plate and therefore acoustic radiation. An increase in boundary layer thickness is found to decrease the level of the high frequencies and therefore the response and radiation at these frequencies. The results are in good qualitative agreement with experimental measurements. Frendi, Abdelkader Langley Research Center NAS1-19700; NAS1-96014; RTOP 537-06-37-20...



















Pressure Gradient Effects on Supersonic Boundary Layer Turbulence


Book Description

Measurements of mean flow profiles at several streamwise locations in a supersonic turbulent boundary layer growing under a continuous adverse pressure gradient are reported. Tests were performed at a freestream Mach number of 3, for an adiabatic wall, using two curved ramps designed to produce constant pressure gradient flows. The velocity profile data, when transformed to incompressible coordinates, are in good agreement with Coles universal 'wall-wake' velocity profile and they indicate that the boundary layer is in local equilibrium and essentially independent of upstream history. In addition, the Coles wake parameters and Clauser shape factors, characterizing the transformed profiles, are in accord with the results of low speed correlations of adverse pressure gradient flows. The turbulent transport terms were extracted from the mean flow field data and indicate that for a given ramp, the profile of turbulent shear stress normalized by the wall shear, versus distance from the surface, normalized by the local boundary thickness, is severely distored by the pressure gradient although it is apparently insensitive to local conditions.




Measurements of a Supersonic Favorable-pressure-gradient Turbulent Boundary Layer with Heat Transfer


Book Description

The results of a detailed experimental investigation of the compressible turbulent boundary layer in a favorable-pressure-gradient flow are presented for zero, moderate and severe heat-transfer conditions. The studies were conducted on a flat nozzle wall at momentum thickness Reynolds numbers from 6,700 to 56,000 and at three wall-to-adiabatic-wall temperature ratios. An attempt was made to hold values of Clauser's pressure-gradient parameter constant. Complete profile measurements were taken with Pitot pressure probes and conical-equilibrium and fine-wire temperature probes. (Modified author abstract).




Supersonic Turbulent Boundary-layer Flows with Mass Injection Through Slots And/or Porous Walls


Book Description

An implicit finite-difference method was used to solve the compressible boundary-layer equations, and to study the effects of mass transfer through porous plates, slots, and a combination of the two. The effects of the external pressure field were also included by using a global pressure interaction scheme. Two different eddy viscosity models were used for the slot and slot-porous combination cases: one was a two-layer model with inner and outer laws, and the other was a multi-layer model with as many as five separate layers. Results of the present method were compared with experimental data at a Mach number of 2.8. Comparisons of the skin friction reduction and Mach number profiles gave good to excellent agreement. Pressure interaction had little effect on the slot injection skin friction but increased the skin friction of the porous and slot-porous combination markedly.




Turbulent Shear Layers in Supersonic Flow


Book Description

A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.