Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers


Book Description

A practical guide for solving real-world circuit board problems Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers arms engineers with the tools they need to test, evaluate, and solve circuit board problems. It explores a wide range of circuit analysis topics, supplementing the material with detailed circuit examples and extensive illustrations. The pros and cons of various methods of analysis, fundamental applications of electronic hardware, and issues in logic design are also thoroughly examined. The author draws on more than twenty-five years of experience in Silicon Valley to present a plethora of troubleshooting techniques readers can use in real-life situations. Plus, he devotes an entire chapter to the design of a small CPU, including all critical elements—the complete machine instruction set, from its execution path to logic implementation and timing analysis, along with power decoupling, resets, and clock considerations. Electrical, Electronics, and Digital Hardware Essentials for Scientists and Engineers covers: Resistors, inductors, and capacitors as well as a variety of analytical methods The elements of magnetism—an often overlooked topic in similar books Time domain and frequency analyses of circuit behavior Numerous electronics, from operational amplifiers to MOSFET transistors Both basic and advanced logic design principles and techniques This remarkable, highly practical book is a must-have resource for solid state circuit engineers, semiconductor designers and engineers, electric circuit testing engineers, and anyone dealing with everyday circuit analysis problems. A solutions manual is available to instructors. Please email [email protected] to request the solutions manual. An errata sheet is available.




Women in Science: Chemistry


Book Description




From Frequency to Time-Average-Frequency


Book Description

Written in a simple, easy to understand style, this book will teach PLL users how to use new clock technology in their work in order to create innovative applications. Investigates the clock frequency concept from a different perspective--at an application level Teaches engineers to use this new clocking technology to create innovations in chip/system level, through real examples extracted from commercial products




NAND Flash Memory Technologies


Book Description

Offers a comprehensive overview of NAND flash memories, with insights into NAND history, technology, challenges, evolutions, and perspectives Describes new program disturb issues, data retention, power consumption, and possible solutions for the challenges of 3D NAND flash memory Written by an authority in NAND flash memory technology, with over 25 years’ experience




Enhanced Phase-Locked Loop Structures for Power and Energy Applications


Book Description

Filling the gap in the market dedicated to PLL structures for power systems Internationally recognized expert Dr. Masoud Karimi-Ghartemani brings over twenty years of experience working with PLL structures to Enhanced Phase-Locked Loop Structures for Power and Energy Applications, the only book on the market specifically dedicated to PLL architectures as they apply to power engineering. As technology has grown and spread to new devices, PLL has increased in significance for power systems and the devices that connect with the power grid. This book discusses the PLL structures that are directly applicable to power systems using simple language, making it easily digestible for a wide audience of engineers, technicians, and graduate students. Enhanced phase-locked loop (EPLL) has become the most widely utilized architecture over the past decade, and many books lack explanation of the structural differences between PLL and EPLL. This book discusses those differences and also provides detailed instructions on using EPLL for both single-phase applications and three-phase applications. The book’s major topics include: A basic look at PLL and its standard structure A full explanation of EPLL EPLL extensions and modifications Digital implementation of EPLL Extensions of EPLL to three-phase structures Dr. Karimi-Ghartemani provides basic analysis that helps readers understand each of the structures presented without requiring complicated mathematical proofs. His book is filled with illustrated examples and simulations that connect theory to the real world, making Enhanced Phase-Locked Loop Structures for Power and Energy Applications an ideal reference for anyone working with inverters, rectifiers, and related technologies.




Understanding Delta-Sigma Data Converters


Book Description

This new edition introduces operation and design techniques for Sigma-Delta converters in physical and conceptual terms, and includes chapters which explore developments in the field over the last decade Includes information on MASH architectures, digital-to-analog converter (DAC) mismatch and mismatch shaping Investigates new topics including continuous-time ΔΣ analog-to-digital converters (ADCs) principles and designs, circuit design for both continuous-time and discrete-time ΔΣ ADCs, decimation and interpolation filters, and incremental ADCs Provides emphasis on practical design issues for industry professionals




CMOS


Book Description

A revised guide to the theory and implementation of CMOS analog and digital IC design The fourth edition of CMOS: Circuit Design, Layout, and Simulation is an updated guide to the practical design of both analog and digital integrated circuits. The author—a noted expert on the topic—offers a contemporary review of a wide range of analog/digital circuit blocks including: phase-locked-loops, delta-sigma sensing circuits, voltage/current references, op-amps, the design of data converters, and switching power supplies. CMOS includes discussions that detail the trade-offs and considerations when designing at the transistor-level. The companion website contains numerous examples for many computer-aided design (CAD) tools. Using the website enables readers to recreate, modify, or simulate the design examples presented throughout the book. In addition, the author includes hundreds of end-of-chapter problems to enhance understanding of the content presented. This newly revised edition: • Provides in-depth coverage of both analog and digital transistor-level design techniques • Discusses the design of phase- and delay-locked loops, mixed-signal circuits, data converters, and circuit noise • Explores real-world process parameters, design rules, and layout examples • Contains a new chapter on Power Electronics Written for students in electrical and computer engineering and professionals in the field, the fourth edition of CMOS: Circuit Design, Layout, and Simulation is a practical guide to understanding analog and digital transistor-level design theory and techniques.




Junctionless Field-Effect Transistors


Book Description

A comprehensive one-volume reference on current JLFET methods, techniques, and research Advancements in transistor technology have driven the modern smart-device revolution—many cell phones, watches, home appliances, and numerous other devices of everyday usage now surpass the performance of the room-filling supercomputers of the past. Electronic devices are continuing to become more mobile, powerful, and versatile in this era of internet-of-things (IoT) due in large part to the scaling of metal-oxide semiconductor field-effect transistors (MOSFETs). Incessant scaling of the conventional MOSFETs to cater to consumer needs without incurring performance degradation requires costly and complex fabrication process owing to the presence of metallurgical junctions. Unlike conventional MOSFETs, junctionless field-effect transistors (JLFETs) contain no metallurgical junctions, so they are simpler to process and less costly to manufacture.JLFETs utilize a gated semiconductor film to control its resistance and the current flowing through it. Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an inclusive, one-stop referenceon the study and research on JLFETs This timely book covers the fundamental physics underlying JLFET operation, emerging architectures, modeling and simulation methods, comparative analyses of JLFET performance metrics, and several other interesting facts related to JLFETs. A calibrated simulation framework, including guidance on SentaurusTCAD software, enables researchers to investigate JLFETs, develop new architectures, and improve performance. This valuable resource: Addresses the design and architecture challenges faced by JLFET as a replacement for MOSFET Examines various approaches for analytical and compact modeling of JLFETs in circuit design and simulation Explains how to use Technology Computer-Aided Design software (TCAD) to produce numerical simulations of JLFETs Suggests research directions and potential applications of JLFETs Junctionless Field-Effect Transistors: Design, Modeling, and Simulation is an essential resource for CMOS device design researchers and advanced students in the field of physics and semiconductor devices.




Embedded Systems Hardware for Software Engineers


Book Description

A PRACTICAL GUIDE TO HARDWARE FUNDAMENTALS Embedded Systems Hardware for Software Engineers describes the electrical and electronic circuits that are used in embedded systems, their functions, and how they can be interfaced to other devices. Basic computer architecture topics, memory, address decoding techniques, ROM, RAM, DRAM, DDR, cache memory, and memory hierarchy are discussed. The book covers key architectural features of widely used microcontrollers and microprocessors, including Microchip's PIC32, ATMEL's AVR32, and Freescale's MC68000. Interfacing to an embedded system is then described. Data acquisition system level design considerations and a design example are presented with real-world parameters and characteristics. Serial interfaces such as RS-232, RS-485, PC, and USB are addressed and printed circuit boards and high-speed signal propagation over transmission lines are covered with a minimum of math. A brief survey of logic families of integrated circuits and programmable logic devices is also contained in this in-depth resource. COVERAGE INCLUDES: Architecture examples Memory Memory address decoding Read-only memory and other related devices Input and output ports Analog-to-digital and digital-to-analog converters Interfacing to external devices Transmission lines Logic families of integrated circuits and their signaling characteristics The printed circuit board Programmable logic devices Test equipment: oscilloscopes and logic analyzers




Sustainable Energy Systems: From Primary to End-Use


Book Description

This book focuses on sustainable energy systems. While several innovative and alternative concepts are presented, the topics of energy policy, life cycle assessment, thermal energy, and renewable energy also play a major role. Models on various temporal and geographical scales are developed to understand the conditions of technical as well as organizational change. New methods of modeling, which can fulfil technical and physical boundary conditions and nevertheless consider economic environmental and social aspects, are also developed.