Electricity Issues


Book Description







Enhancing the Resilience of the Nation's Electricity System


Book Description

Americans' safety, productivity, comfort, and convenience depend on the reliable supply of electric power. The electric power system is a complex "cyber-physical" system composed of a network of millions of components spread out across the continent. These components are owned, operated, and regulated by thousands of different entities. Power system operators work hard to assure safe and reliable service, but large outages occasionally happen. Given the nature of the system, there is simply no way that outages can be completely avoided, no matter how much time and money is devoted to such an effort. The system's reliability and resilience can be improved but never made perfect. Thus, system owners, operators, and regulators must prioritize their investments based on potential benefits. Enhancing the Resilience of the Nation's Electricity System focuses on identifying, developing, and implementing strategies to increase the power system's resilience in the face of events that can cause large-area, long-duration outages: blackouts that extend over multiple service areas and last several days or longer. Resilience is not just about lessening the likelihood that these outages will occur. It is also about limiting the scope and impact of outages when they do occur, restoring power rapidly afterwards, and learning from these experiences to better deal with events in the future.







Pacific Northwest Electric Power Issues


Book Description

A bill to assist the electrical of the Pacific Northwest through use of the Federal Columbia River Power System ot achieve cost-effective energy conservation, to encourage the development of renewable resources, to establish a representative regional power planning process, to assure the region of an efficient and adequate power supply, and for other purposes.







Unsettled Issues Concerning the Use of Fuel Cells in Electric Ground Vehicles


Book Description

Hydrogen fuel is rapidly emerging as a clean energy carrier solution that has the potential to decarbonize a variety of industries, including, or predominantly, the transportation industry. Fuel cell electric vehicles (FCEVs), which electrochemically combine stored hydrogen with atmospheric oxygen to efficiently generate electricity while producing only water vapor and small amounts of heat, are heralded to be a game-changing technology. The so-called hydrogen economy has the potential to displace traditional fossil fuel-based economy, with the transportation industry being the first mover in the hydrogen space. Technological advances made in the last decade in the areas of hydrogen generation and fuel cell technology have enabled the current uptake of hydrogen-based solutions for vehicle applications. Reduced costs, climate change, and carbon tax mechanisms are driving many governments, manufacturers, and consumers toward hydrogen-powered vehicles. The major drawbacks of hydrogen compared to the other competing clean-energy technologies (e.g., battery power), is the high cost of hydrogen refueling and FCEVs. However, application of the economy of scale will enable further cost reduction and broad international uptake of hydrogen in automotive applications. This SAE EDGE™ Research Report explores the opportunities and challenges of hydrogen and fuel cell systems in the automotive industry. With the help of expert contributors, several different technological, economic, and safety aspects are considered to develop a better understanding of this emerging hydrogen-based automotive industry. While debates between proponents of battery electric vehicles (BEVs) and FCEVs continue, the current report discusses the unsettled issues in the latter technology and presents a critical overview of the hydrogen and fuel cell systems in the automotive industry. Finally, the report concludes with a series of recommendations aimed at the industry and government stakeholders for implementing and advancing hydrogen transportation projects. NOTE: SAE EDGE™ Research Reports are intended to identify and illuminate critical issues in emerging, but still unsettled, technologies of interest to the mobility industry. The goal of SAE EDGE™ Research Reports is to stimulate discussion and work in the hope of promoting and speeding resolution of identified issues. SAE EDGE™ Research Reports are not intended to resolve the issues they identify or close any topic to further scrutiny. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2019002










Unsettled Issues Regarding the Certification of Electric Aircraft


Book Description

The aerospace industry is beginning to grapple with the reality of certifying electric aircraft (EA), signaling the maturing of the field. Many players are ramping up their activities to respond to imminent technical, safety, and regulatory requirements. While there are gaps in EA knowledge as well as the processes for certifying them, some leading standards development organizations (SDOs) such as SAE International, ASTM International, and RTCA—ably supported by representatives from regulatory agencies—are stepping in to address many of these issues. Of special importance are the new rule changes in the normal category (14 CFR Part 23, Amendment 64) that shift from a prescriptive philosophy to “performance-based rules.” Regarding system knowledge, there has been a trend in the use electrical energy to power systems that have long employed mechanical hydraulics. In the new EA paradigm, these components will be employed at criticality levels not previously witnessed in conventional aircraft, calling for a specific set of certification demands. Unsettled Issues Regarding the Certification of Electric Aircraft tackles the certification challenges faced by EA manufacturers in both the small (normal) and large (transport) categories, addressing technical, business, and process issues. Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2021007