Platinum Monolayer Electrocatalysts


Book Description

This book describes a science and technology of a new type of electrocatalysts consisting of a single atomic layer of platinum on suitable supports. This development helped overcome three major obstacles—catalysts‘ cost, activity, and stability—for a broad range of fuel cell applications. The volume begins with a short introduction to the science of electrocatalysis, covering four reactions important for energy conversion in fuel cells. A description follows of the properties of metal monolayers on electrode surfaces, and underpotential deposition of metals. The authors then describe the concept of Pt monolayer electrocatalysts and its implications and their synthesis by galvanic displacement of less-noble metal monolayers and other methods. The main part of the book presents a discussion of catalysts’ characterization and catalytic properties of Pt monolayers for the four main reactions of electrochemical energy conversion: oxygen reduction and oxidation of hydrogen, methanol and ethanol. The book concludes with a treatment of scale-up syntheses, fuel cell tests, catalysts’ stability and application prospects.




Platinum Monolayer Electrocatalysts


Book Description

This book describes a science and technology of a new type of electrocatalysts consisting of a single atomic layer of platinum on suitable supports. This development helped overcome three major obstacles—catalysts‘ cost, activity, and stability—for a broad range of fuel cell applications. The volume begins with a short introduction to the science of electrocatalysis, covering four reactions important for energy conversion in fuel cells. A description follows of the properties of metal monolayers on electrode surfaces, and underpotential deposition of metals. The authors then describe the concept of Pt monolayer electrocatalysts and its implications and their synthesis by galvanic displacement of less-noble metal monolayers and other methods. The main part of the book presents a discussion of catalysts’ characterization and catalytic properties of Pt monolayers for the four main reactions of electrochemical energy conversion: oxygen reduction and oxidation of hydrogen, methanol and ethanol. The book concludes with a treatment of scale-up syntheses, fuel cell tests, catalysts’ stability and application prospects.




Advanced Materials for Clean Energy


Book Description

Research for clean energy is booming, driven by the rapid depletion of fossil fuels and growing environmental concerns as well as the increasing growth of mobile electronic devices. Consequently, various research fields have focused on the development of high-performance materials for alternative energy technologies.Advanced Materials for Clean Ene




Electrochemical and Electrocatalytic Reactions of Carbon Dioxide


Book Description

The recycling of atmospheric molecules for use as fuels and chemicals is a goal which can only be achieved through a deeper understanding of catalytic processes, particularly electrocatalysis whereby redox transformations can be interfaced with solar or nuclear energy input. Carbon dioxide is a prototypical small molecule in many regards since it is chemically inert. In addition, because of the likely role of carbon dioxide in global temperature cycles, it will be imperative in the future to regulate the output from industrial processes. The purpose of this book is to present a unified discussion of the carbon dioxide chemistry which is necessary for the understanding and design of electrochemically-driven processes for the reduction of carbon dioxide and to provide an impetus for the further development of electrocatalytic carbon dioxide chemistry.




Ammonia Fuel Cells


Book Description

Ammonia Fuel Cells covers all aspects of ammonia fuel cell technologies and their applications, including their theoretical analysis, modeling studies and experimental investigations. The book analyzes the role of integrated ammonia fuel cell systems within various renewable energy resources and existing energy systems.




Preparative Layer Chromatography


Book Description

Preparative Layer Chromatography explains how this method is used for separating large quantities of mixtures containing a wide variety of important compounds. It offers a broad review of preparative layer chromatography (PLC) applications and adaptable working procedures for microseparations involving organic, inorganic, and organometallic compoun




New Carbons - Control of Structure and Functions


Book Description

The discovery of fullerenes and nanotubes has greatly stimulated the interest of scientists and engineers in carbon materials, and has resulted in much scientific research. These materials have provided us with many interesting ideas and potential applications, some of them practical and some simply dreams for the future. In the early 1960s, carbon fibers, glass-like carbons and pyrolytic carbons were developed which were quite different from the carbon materials that had previously been used. Carbon fibers exhibited surprisingly good mechanical properties, glass-like carbons exhibited brittle fracture resulting in a conchoidal fracture surface similar to sodium glass, and giving no carbon dust, and pyrolytic carbons were produced by a new production process of chemical vapour deposition and showed very high anisotropy. These carbons materials made a great impact not only on the carbon community who had been working on carbon materials but also on people working in the fields of materials science and engineering. They were used to develop a variety of new applications in technological fields, such as semiconductors, microelectronics, aerospace and high temperature, etc. These newly developed carbon materials were called NEW CARBONS, in comparison with carbon materials such as artificial graphites represented by graphite electrodes, carbon blacks and activated carbons, which maybe thought of as CLASSICAL CARBONS. Later, other new carbons, such as activated carbons and those with novel functions, isotropic high-density graphites, intercalation compounds, various composites, etc., were developed. In 1994, Professor Michio Inagaki published a book entitled "New Carbon Materials — Structure and Functions" with his friend Professor Yoshihiro Hishiyama of Musashi Institute of Technology, published by Gihoudou Shuppan in Japanese. However, progress in the fields of these new carbons is so rapid that the previous book is already out of date. For this reason the author has decided to write an English text on New Carbons. The text focuses on New Carbons based on hexagonal networks of carbon-atoms, i.e. graphite-related materials. The fundamental concept underlying this book is that the structure and functions of these materials are principally governed by their texture. The aim is to give readers a comprehensive understanding of New Carbons through the description of their structure and texture, along with the properties that are largely dependent on them.




Graphene Oxide


Book Description

This book focuses on a group of new materials labeled "graphene oxides." It provides a comprehensive overview of graphene oxide-based nanomaterials in terms of their synthesis, structures, properties, and extensive applications in catalysis, separation, filtration, energy storage and conversion. The book also covers emerging research on graphite oxides and the impact of the research on fundamental and applied sciences.




Electrochemical Energy


Book Description

Electrochemical Energy: Advanced Materials and Technologies covers the development of advanced materials and technologies for electrochemical energy conversion and storage. The book was created by participants of the International Conference on Electrochemical Materials and Technologies for Clean Sustainable Energy (ICES-2013) held in Guangzhou, China, and incorporates select papers presented at the conference. More than 300 attendees from across the globe participated in ICES-2013 and gave presentations in six major themes: Fuel cells and hydrogen energy Lithium batteries and advanced secondary batteries Green energy for a clean environment Photo-Electrocatalysis Supercapacitors Electrochemical clean energy applications and markets Comprised of eight sections, this book includes 25 chapters featuring highlights from the conference and covering every facet of synthesis, characterization, and performance evaluation of the advanced materials for electrochemical energy. It thoroughly describes electrochemical energy conversion and storage technologies such as batteries, fuel cells, supercapacitors, hydrogen generation, and their associated materials. The book contains a number of topics that include electrochemical processes, materials, components, assembly and manufacturing, and degradation mechanisms. It also addresses challenges related to cost and performance, provides varying perspectives, and emphasizes existing and emerging solutions. The result of a conference encouraging enhanced research collaboration among members of the electrochemical energy community, Electrochemical Energy: Advanced Materials and Technologies is dedicated to the development of advanced materials and technologies for electrochemical energy conversion and storage and details the technologies, current achievements, and future directions in the field.