Materials that Change Color


Book Description

This book presents a design-driven investigation into smart materials developed by chemists, physicists, materials and chemical engineers, and applied by designers to consumer products. Introducing a class of smart materials, that change colors, the book presents their characteristics, advantages, potentialities and difficulties of applications of this to help understanding what they are, how they work, how they are applied. The books also present a number of case studies: products, projects, concepts and experiments using smart materials, thus mapping out new design territories for these innovative materials. These case studies involve different fields of design, including product, interior, fashion and communication design. Within the context of rising sustainable and human-centered design agendas, the series will demonstrate the role and influence of these new materials and technologies on design, and discuss how they can implement and redefine our objects and spaces to encourage more resilient environments.




Electrochromic Materials and Devices


Book Description

Electrochromic materials can change their properties under the influence of an electrical voltage or current. Different classes of materials show this behavior such as transition metal oxides, conjugated polymers, metal-coordinated complexes and organic molecules. As the color change is persistent, the electric field needs only to be applied to initiate the switching, allowing for applications such as low-energy consumption displays, light-adapting mirrors in the automobile industry and smart windows for which the amount of transmitted light and heat can be controlled. The first part of this book describes the different classes and processing techniques of electrochromic materials. The second part highlights nanostructured electrochromic materials and device fabrication, and the third part focuses on the applications such as smart windows, adaptive camouflage, biomimicry, wearable displays and fashion. The last part rounds off the book by device case studies and environmental impact issues.




Transparent Conductive Materials


Book Description

Edited by well-known pioneers in the field, this handbook and ready reference provides a comprehensive overview of transparent conductive materials with a strong application focus. Following an introduction to the materials and recent developments, subsequent chapters discuss the synthesis and characterization as well as the deposition techniques that are commonly used for energy harvesting and light emitting applications. Finally, the book concludes with a look at future technological advances. All-encompassing and up-to-date, this interdisciplinary text runs the gamut from chemistry and materials science to engineering, from academia to industry, and from fundamental challenges to readily available applications.




Handbook of Inorganic Electrochromic Materials


Book Description

Electrochromic materials are able to change their optical properties in a persistent and reversible way under the action of a voltage pulse. This book explores electrochromism among the metal oxides, with detailed discussions of materials preparation (primarily by thin film technology), materials characterization by (electro)chemical and physical techniques, optical properties, electrochromic device design, and device performance. The vast quantity of information presented is structured in a systematic manner and the optical data is interpreted within a novel conceptual framework.The publication will serve as a comprehensive foundation and reference work for future studies within the rapidly expanding field of electrochromic materials and devices. These devices are of particular interest for information displays, variable-transmittance (smart) windows, variable-reflectance mirrors and variable-emittance surfaces.




Electrochromic Materials and Devices


Book Description

Electrochromic materials can change their properties under the influence of an electrical voltage or current. Different classes of materials show this behavior such as transition metal oxides, conjugated polymers, metal-coordinated complexes and organic molecules. As the color change is persistent, the electric field needs only to be applied to initiate the switching, allowing for applications such as low-energy consumption displays, light-adapting mirrors in the automobile industry and smart windows for which the amount of transmitted light and heat can be controlled. The first part of this book describes the different classes and processing techniques of electrochromic materials. The second part highlights nanostructured electrochromic materials and device fabrication, and the third part focuses on the applications such as smart windows, adaptive camouflage, biomimicry, wearable displays and fashion. The last part rounds off the book by device case studies and environmental impact issues.







Transition Metal Oxide Thin Film-Based Chromogenics and Devices


Book Description

The phase transition and the reversible optical and electrical switching that occur in chromogenic materials under the influence of external forces such as heat, light, and electric field are topics of enormous scientific interest. Transition Metal Oxide Thin Film–Based Chromogenics and Devices discusses experimental and theoretical developments in the field of chromogenics based on the transition metal oxide (TMO) thin films. Understanding the relationship between the switching properties of TMO materials and their nanostructure is of paramount importance in developing efficient chromogenic devices. The tailoring of these switching behaviors is afforded detailed coverage in this book, alongside in-depth discussion of a range of chromogenic materials and devices, including photochromics, thermochromics, and electrochromics. Transition Metal Oxide Thin Film–Based Chromogenics and Devices covers both the theoretical aspects of TMO thin film–based chromogenics and their engineering applications in device construction. Academics and professionals in the fields of materials science and optics will find this book to be a key resource, whether their focus is low-dimension materials, light-materials interactions, or device development. - Enables researchers to keep up with developments in thin film–based chromogenics - Provides detailed coverage of the switching mechanism of the various TMO thin films to assist readers in developing more efficient devices - Offers in-depth discussion of a range of chromogenic materials and devices, including thermochromics, photochromics, and electrochromics




Smart Buildings


Book Description

Smart Buildings: Advanced Materials and Nanotechnology to Improve Energy Efficiency and Environmental Performance presents a thorough analysis of the latest advancements in construction materials and building design that are applied to maximize building efficiency in both new and existing buildings. After a brief introduction on the issues concerning the design process in the third millennium, Part One examines the differences between Zero Energy, Green, and Smart Buildings, with particular emphasis placed on the issue of smart buildings and smart housing, mainly the 'envelope' and how to make it more adaptive with the new possibilities offered by nanotechnology and smart materials. Part Two focuses on the last generation of solutions for smart thermal insulation. Based on the results of extensive research into more innovative insulation materials, chapters discuss achievements in nanotechnology, bio-ecological, and phase-change materials. The technical characteristics, performance level, and methods of use for each are described in detail, as are the achievements in the field of green walls and their use as a solution for upgrading the energy efficiency and environmental performance of existing buildings. Finally, Part Three reviews current research on smart windows, with the assumption that transparent surfaces represent the most critical element in the energy balance of the building. Chapters provide an extensive review on the technical features of transparent closures that are currently on the market or under development, from so-called dynamic glazing to bio-adaptive and photovoltaic glazing. The aesthetic potential and performance limits are also be discussed. - Presents valuable definitions that are given to explain the characteristics, requirements, and differences between 'zero energy', 'green' and 'smart' buildings - Contains particular focus on the next generation of construction materials and the most advanced products currently entering the market - Lists both the advantages and disadvantages to help the reader choose the most suitable solution - Takes into consideration both design and materials aspects - Promotes the existence of new advanced materials providing technical information to encourage further use and reduce costs compared to more traditional materials




Materials that Move


Book Description

This book presents a design-driven investigation into smart materials developed by chemists, physicists, materials and chemical engineers, and applied by designers to consumer products, buildings, interfaces, or textiles. Introducing a class of smart materials (referred to as stimuli-responsive, morphing or kinetic materials) that move and change their shape in response to stimuli, the book presents their characteristics, advantages, potentials, as well as the difficulties involved in their application. The book also presents a large number of case studies on products, projects, concepts, and experiments employing smart materials, thus mapping out new design territories for these innovative materials. The case studies involve different fields of design, including product, interior, fashion, and communication design. Reflecting the growing demand for sustainable and human-centered design agendas, the book explores and reveals the role and influence of these new materials and technologies on design and human experience, and discusses how they can be used to redefine our objects and spaces so as to promote more resilient environments. The book offers an intriguing and valuable resource for design professionals, engineers, scientists and students alike.




Metal Electrodeposition


Book Description

Electrochemistry is the branch of chemistry that deals with the chemical action of electricity and the production of electricity by chemical reactions. In a world short of energy sources yet long on energy use, electrochemistry is a critical component of the mix necessary to keep the world economies growing. Electrochemistry is involved with such important applications as batteries, fuel cells, corrosion studies, hydrogen energy conversion, and bioelectricity. Research on electrolytes, cells, and electrodes is within the scope of this old but extremely dynamic field. This book details advances in metal electrodeposition.