Electron Paramagnetic Resonance


Book Description

This book provides an introduction to the underlying theory, fundamentals, and applications of EPR spectroscopy, as well as new developments in the area. Knowledge of the topics presented will allow the reader to interpret of a wide range of EPR spectra, as well as help them to apply EPR techniques to problem solving in a wide range of areas: organic, inorganic, biological, and analytical chemistry; chemical physics, geophysics, and minerology. Includes updated information on high frequency and multi-frequency EPR, pulsed microwave techniques and spectra analysis, dynamic effects, relaxation phenomena, computer-based spectra simulation, biomedical aspects of EPR, and more Equips readers with sufficient knowledge of EPR techniques to go on in their specialized area of interest Provides problem sets and concise bibliographies at the end of each chapter, plus several tutorial appendices on topics like mathematical operations, quantum mechanics of angular momentum, experimental considerations.




Electron Paramagnetic Resonance Spectroscopy


Book Description

Although originally invented and employed by physicists, electron paramagnetic resonance (EPR) spectroscopy has proven to be a very efficient technique for studying a wide range of phenomena in many fields, such as chemistry, biochemistry, geology, archaeology, medicine, biotechnology, and environmental sciences. Acknowledging that not all studies require the same level of understanding of this technique, this book thus provides a practical treatise clearly oriented toward applications, which should be useful to students and researchers of various levels and disciplines. In this book, the principles of continuous wave EPR spectroscopy are progressively, but rigorously, introduced, with emphasis on interpretation of the collected spectra. Each chapter is followed by a section highlighting important points for applications, together with exercises solved at the end of the book. A glossary defines the main terms used in the book, and particular topics, whose knowledge is not required for understanding the main text, are developed in appendices for more inquisitive readers.




Electron Paramagnetic Resonance


Book Description

This book offers a pragmatic guide to navigating through the complex maze of EPR/ESR spectroscopy fundamentals, techniques, and applications. Written for the scientist who is new to EPR spectroscopy, the editors have prepared a volume that de-mystifies the basic fundamentals without weighting readers down with detailed physics and mathematics, and then presents clear approaches in specific application areas. The first part presents basic fundamentals and advantages of electron paramagnetic resonance spectrscopy. The second part explores severalapplication areas including chemistry, biology, medicine, materials and geology. A frequently-asked-questions sections focuses on practicalquestions, such as the size of sample, etc. It's an ideal, hands-on reference for chemists and researchers in the pharmaceutical and materials (semiconductor) industries who are looking for a basic introduction to EPR spectroscopy.




New Applications of Electron Spin Resonance


Book Description

This is the first book covering an interdisciplinary field between microwave spectroscopy of electron paramagnetic resonance (EPR) or electron spin resonance (ESR) and chronology science, radiation dosimetry and ESR (EPR) imaging in material sciences. The main object is to determine the elapsed time with ESR from forensic medicine to the age and radiation dose in earth and space science. This book is written primarily for earth scientists as well as for archaeologists and for physicists and chemists interested in new applications of the method. This book can serve as an undergraduate and graduate school textbook on applications of ESR to geological and archaeological dating, radiation dosimetry and microscopic magnetic resonance imaging (MRI). Introduction to ESR and chronology science and principle of ESR dating and dosimetry are described with applications to actual problems according to materials.




Electron Paramagnetic Resonance of d Transition Metal Compounds


Book Description

Electron paramagnetic resonance (epr) spectroscopy is a sensitive and versatile method of studying paramagnets, which is finding increasing use in chemistry, biochemistry, earth and materials sciences. The technique is treated both qualitatively and quantitatively, with a progressive increase in sophistication in each succeeding chapter. Following a general introductory chapter, the first half of the book deals with single unpaired electron systems and considers both metal and ligand Zeeman, hyperfine and quadrupole interactions. The simulation of these spectra is discussed, followed by the relationship between spin-Hamiltonian parameters and models of the electronic structures of paramagnets. The second half of the book treats multiple unpaired electron systems using the same philosophy. An introduction to the epr properties of cluster compounds and of extended exchanging systems is also given. There is a chapter on linewidths and lineshapes, and an extensive appendix containing much additional information. A wide-ranging library of simulated and experimental spectra is given, as well as graphical data which should aid spectrum interpretation. Each chapter contains key references and there is a substantial subject and keyword index. This book is designed to teach epr spectroscopy to students without any previous knowledge of the technique. However, it will also be extremely useful to researchers dealing with paramagnetic d transition metals.




Principles of Pulse Electron Paramagnetic Resonance


Book Description

Pulse EPR (electron paramagnetic resonance) is one of the newest and most widely used techniques for examining the structure, function and dynamics of biological systems and synthetic materials. Until now, however, there has been no single text dedicated to this growing area of research. This text addresses the need for a comprehensive overview of Pulse EPR. The book covers the basic theory of pulse EPR, as well as a description and critical evaluation of the existing and emerging methods needed for selecting and conducting the proper experiment and analyzing the results. This is an indispensable reference for all scientists who need a thorough grounding in this increasingly popular field of spectroscopy.




Multifrequency Electron Paramagnetic Resonance


Book Description

Filling the gap for a systematic, authoritative, and up-to-date review of this cutting-edge technique, this book covers both low and high frequency EPR, emphasizing the importance of adopting the multifrequency approach to study paramagnetic systems in full detail by using the EPR method. In so doing, it discusses not only the underlying theory and applications, but also all recent advances -- with a final section devoted to future perspectives.




Electron Magnetic Resonance


Book Description

Electron Magnetic Resonance: Applications in Physical Sciences and Biology, Volume 50, describes the principles and recent trends in different experimental methods of Electron Magnetic Resonance (EMR) spectroscopy. In addition to principles, experimental methods and applications, each chapter contains a complete list of references that guide the reader to relevant literature. The book is intended for both skilled and novice researchers in academia, professional fields, scientists and students without any geographical limitations. It is useful for both beginners and experts in the field of Electron Spin Resonance who are looking for recent experimental methods of EMR techniques. Features a bottoms-up approach, with each chapter opening with basic theory and principles that are followed by recent trends and applications Focuses on applications and data interpretation, thus avoiding extensive use of mathematics Includes content from scientists working with lead manufacturers of EMR machines Provides thorough comparisons of the features of each EMR machine Written by experts in ESR spectroscopy from all over the world, giving the content global appeal




Foundations Of Modern Epr


Book Description

Since its inception 50 years ago, electron paramagnetic resonance (EPR, also called ESR or EMR) has become a major tool in diverse fields ranging from biology and chemistry to solid state physics and materials science. This important book includes personal descriptions of early experiments by pioneers who laid the foundations for the field, perspectives on the state of the art, and glimpses of future opportunities. It presents a broad view of the foundations of EPR and its applications, and will therefore appeal to scientists in many fields. Even the expert will find here history not previously recorded and provocative views of future directions.




Electron Spin Resonance (ESR) Based Quantum Computing


Book Description

This book addresses electron spin-qubit based quantum computing and quantum information processing with a strong focus on the background and applications to EPR/ESR technique and spectroscopy. It explores a broad spectrum of topics including quantum computing, information processing, quantum effects in electron-nuclear coupled molecular spin systems, adiabatic quantum computing, heat bath algorithmic cooling with spins, and gateway schemes of quantum control for spin networks to NMR quantum information. The organization of the book places emphasis on relevant molecular qubit spectroscopy. These revolutionary concepts have never before been included in a comprehensive volume that covers theory, physical basis, technological basis, applications, and new advances in this emerging field. Electron Spin Resonance (ESR) Based Quantum Computing, co-edited by leading and renowned researchers Takeji Takui, Graeme Hanson and Lawrence J Berliner, is an ideal resource for students and researchers in the fields of EPR/ESR, NMR and quantum computing. This book also • Explores methods of harnessing quantum effects in electron-nuclear coupled molecular spin systems • Expertly discusses applications of optimal control theory in quantum computing • Broadens the readers’ understanding of NMR quantum information processing