Book Description
The story of heavy fermions (HF) begun with the discovery of the low temperature behaviour of CeAl3 by Andres et al. in the year 1975 took the momentum after the discovery of superconductivity in CeCu2Si2 by Steglich et al. in the year 1979 . Though HF behaviour is common in the rare-earth elements like Ce, Yb and actinides like U, it is also found to exist in some of the praseodymium (Pr), samarium (Sm) , plutonium (Pu) and more recently in neptunium (Np) systems. These compounds are characterized by the presence of partially filled f-electron bands. At high temperatures, these magnetic moments manifest themselves as a weakly interacting set of local moments of the f electrons with Curie-Weiss susceptibility that coexists with light s or d conduction electrons. But at low temperature, these f-electrons hybridize with conduction electrons near Fermi level via Kondo spin fluctuation which happens through constant exchange spin-flip transition of f-electrons and band electrons in the vicinity of Fermi level. This process leads to a strong mixing of Fermi electrons with the localized f-electrons which is manifested in a renormalization of the Fermi surface and a drastic enhancement of the effective mass of the electrons at Fermi level. Further, in HF systems, electron-phonon interaction (EPI) contributes a lot in manifestation of some of the anomalous behaviour relating to elastic constant, ultrasonic attenuation & sound velocity, anisotropic Fermi surface, Kondo volume collapse etc. In this PhD thesis book in title “Electron phonon interaction and its effect in heavy fermion (HF) systems” the author tries to put some light into the behavoiour of Electron-phonon interaction in describing some of the properties of HF systems at low temperatures. In this 1 st edition, the book has been presented in multicolour edition with profuse colour illustrations so as to increase its clarity, understand ability and legibility, especially of the figures depicted to explain the low temperature behaviour of HF systems. It is hoped that the present book will serve its purpose in attracting young researchers to the field of HF systems. It is my foremost duty to express my deep sense of gratitute to my supervisor Dr. Pratibindhya Nayak , Professor Emeritus, School of Physics, Sambalpur University, Odisha, for his able guidance at every stage of this work.. His innovative methods and inspirational guidance have largely contributed to the conceptualization of the form and content of this book. I am indebted to my family members for their constant support. I am sincerely thankful to the publisher, Newredmars Education to bring my works into light in form of a book Healthy criticism and suggestions for further improvement of the book are solicited.