ELECTRON-PHONON INTERACTION AND ITS EFFECTS IN HEAVY FERMION SYSTEMS


Book Description

The story of heavy fermions (HF) begun with the discovery of the low temperature behaviour of CeAl3 by Andres et al. in the year 1975 took the momentum after the discovery of superconductivity in CeCu2Si2 by Steglich et al. in the year 1979 . Though HF behaviour is common in the rare-earth elements like Ce, Yb and actinides like U, it is also found to exist in some of the praseodymium (Pr), samarium (Sm) , plutonium (Pu) and more recently in neptunium (Np) systems. These compounds are characterized by the presence of partially filled f-electron bands. At high temperatures, these magnetic moments manifest themselves as a weakly interacting set of local moments of the f electrons with Curie-Weiss susceptibility that coexists with light s or d conduction electrons. But at low temperature, these f-electrons hybridize with conduction electrons near Fermi level via Kondo spin fluctuation which happens through constant exchange spin-flip transition of f-electrons and band electrons in the vicinity of Fermi level. This process leads to a strong mixing of Fermi electrons with the localized f-electrons which is manifested in a renormalization of the Fermi surface and a drastic enhancement of the effective mass of the electrons at Fermi level. Further, in HF systems, electron-phonon interaction (EPI) contributes a lot in manifestation of some of the anomalous behaviour relating to elastic constant, ultrasonic attenuation & sound velocity, anisotropic Fermi surface, Kondo volume collapse etc. In this PhD thesis book in title “Electron phonon interaction and its effect in heavy fermion (HF) systems” the author tries to put some light into the behavoiour of Electron-phonon interaction in describing some of the properties of HF systems at low temperatures. In this 1 st edition, the book has been presented in multicolour edition with profuse colour illustrations so as to increase its clarity, understand ability and legibility, especially of the figures depicted to explain the low temperature behaviour of HF systems. It is hoped that the present book will serve its purpose in attracting young researchers to the field of HF systems. It is my foremost duty to express my deep sense of gratitute to my supervisor Dr. Pratibindhya Nayak , Professor Emeritus, School of Physics, Sambalpur University, Odisha, for his able guidance at every stage of this work.. His innovative methods and inspirational guidance have largely contributed to the conceptualization of the form and content of this book. I am indebted to my family members for their constant support. I am sincerely thankful to the publisher, Newredmars Education to bring my works into light in form of a book Healthy criticism and suggestions for further improvement of the book are solicited.




Heavy-Fermion Systems


Book Description

The book on Heavy-Fermion Systems is a part of the Book series "Handbook of Metal Physics", each volume of which is written to facilitate the research of Ph.D. students, faculty and other researchers in a specific area. The Heavy-Fermions (sometimes known as Heavy-Electrons) is a loosely defined collection of intermetallic compounds containing rare-earth (mostly Ce) or actinide (mostly U) elements. These unusual names were given due to the large effective mass (100-1,000 times greater than the mass of a free electron) below a critical temperature. They have a variety of ground states including superconducting, antiferromagnetic, paramagnetic or semiconducting. Some display unusual magnetic properties such as magnetic quantum critical point and metamagnetism. This book is essentially a summary as well as a critical review of the theoretical and experimental work done on Heavy Fermions.· Extensive research references.· Comprehensive review of a very rapidly growing number of theories.· Summary of all important experiments.· Comparison with other highly correlated systems such as High-Tc Superconductors.· Possible Technological applications.




Anomalous Rare Earths and Actinides


Book Description

Anomalous Rare Earths and Actinides: Valence Fluctuation and Heavy Fermions focuses on the characteristics, reactions, transformations, technologies, and processes involved in the study of anomalous rare earths and actinides. The selection first offers information on lanthanides and actinides and electronic structures in cerium monopnictides. Topics include rare earth metals with fluctuating valencies, 'normal' rare earth metals, and band calculation and Fermi surface. The text then elaborates on neutron scattering studies of anomalous rare earth compounds, including magnetic neutron scattering measurements, stability and localization of magnetic moments, and condensed state. The manuscript examines the transport properties of cerium monochalcogenides and pressure-volume relationships of cerium monochalcogenides and monopnictides. The text also ponders on the theory of anisotropic magnetic behavior in hybridizing actinide systems; band hybridization effects on indirect magnetic coupling of localized moments; and neutron scattering from transuranium materials. The selection is a dependable reference for readers interested in the research on anomalous rare earths and actinides.




Phonons in Condensed Materials


Book Description

Papers presented at the International Conference on Phonons in Condensed Materials, held at Bhopal during 20-23 January 2003.




Landau Level Spectroscopy


Book Description

Modern Problems in Condensed Matter Sciences, Volume 27.2: Landau Level Spectroscopy focuses on the processes, reactions, methodologies, and approaches involved in condensed matter sciences, including magnetospectroscopy, resonances, electrodynamics, and magnetic fields. The selection first offers information on the magnetospectroscopy of confined semiconductor systems and the magnetophonon effect in two dimensions. Discussions focus on hot-electron magnetophonon resonance, normal resonances, free carrier states, confined impurities, and electron-phonon interaction. The text then takes a look at the energy spectrum and magnetooptics of band-inverting heterojunctions and the electrodynamics of two-dimensional electron systems in high magnetic fields. The publication examines Landau emission and the Shubnikov-de Haas (SdH) effect. Topics include smooth magnetoresistance and SdH effect, Landau level electronic lifetimes, experimental techniques, and Landau emission in III-IV semiconductors. The book then elaborates on a comprehensive review of the experimental aspects of the SdH effect; magnetoimpurity resonances in semiconductor transport; and magnetophonon resonance. The selection is a highly recommended reference for scientists and readers interested in the Landau level spectroscopy.




Physics Of Heavy Fermions: Heavy Fermions And Strongly Correlated Electrons Systems


Book Description

A large variety of materials prove to be fascinating in solid state and condensed matter physics. New materials create new physics, which is spearheaded by the international experimental expert, Prof Yoshichika Onuki. Among them, the f electrons of rare earth and actinide compounds typically exhibit a variety of characteristic properties, including spin and charge orderings, spin and valence fluctuations, heavy fermions, and anisotropic superconductivity. These are mainly manifestations of better competitive phenomena between the RKKY interaction and the Kondo effect. The present text is written so as to understand these phenomena and the research they prompt. For example, superconductivity was once regarded as one of the more well-understood many-body problems. However, it is, in fact, still an exciting phenomenon in new materials. Additionally, magnetism and superconductivity interplay strongly in heavy fermion superconductors. The understanding of anisotropic superconductivity and magnetism is a challenging problem in solid state and condensed matter physics. This book will tackle all these topics and more.




Electronic Structure, Correlation Effects and Physical Properties of D- and F-metals and Their Compounds


Book Description

The book includes all main physical properties of d- and f-transition-metal systems and corresponding theoretical concepts. Special attention is paid to the theory of magnetism and transport phenomena. Some examples of non-traditional questions which are treated in detail in the book: the influence of density of states singularities on electron properties; many-electron description of strong itinerant magnetism; mechanisms of magnetic anisotropy; microscopic theory of anomalous transport phenomena in ferromagnets. Besides considering classical problems of solid state physics as applied to transition metals, modern developments in the theory of correlation effects in d- and f-compounds are considered within many-electron models. The book contains, where possible, a simple physical discussion. More difficult questions are considered in Appendices.




Electron Correlations in Molecules and Solids


Book Description

Dieser Titel verbindet die Festkörpertheorie mit der Quantenchemie. Neue Konzepte der Vielteilchen-Verarbeitung und Korrelations-Effekte, normale quantenchemische Verfahren mit Projektionstechniken, Greensche Funktionen und Monte-Carlo-Methoden werden erarbeitet. Anwendungsbereiche der Molekültheorie, von Halbleitern, supraleitender high-Tc-Materialien, etc., werden vorgestellt.







Electron-phonon Interaction In Oxide Superconductors - Proceedings Of The First Cinvestav Superconductivity Symposium


Book Description

Contents:Lattice Vibrations of the Cuprate Superconductors (W Reichardt et al)Evidence of Strong Electron-Phonon Interaction from the Infrared Spectra of YBa2Cu3O7 (T Timusk & D B Tanner)Electron-Phonon Interaction and Infrared Spectra of High Temperature Superconductors (O V Dolgov et al)Tunneling Studies of Bimuthate and Cuprate Superconductors (J F Zasadzinski et al)Phonon Mechanism of the High Tc Superconductivity Based on the Tunneling Structure (D Shimada et al)Lattice Instabilities in High Temperature Superconductors: The X Tilt Point Energy Surface for La2-xBaxCuO4 (W E Pickett et al)Structural Instability and Strong Coupling in Oxide Superconductors (N M Plakida)On the Isotope Effect (J P Carbotte)Electron-Phonon Coupling, Oxygen Isotope Effect and Superconductivity in Ba1-xKxBio3 (C K Loong et al)Weak Coupling Theory of the High-Tc Superconductors Based on the Electron-Phonon Interaction (J Labbé)Phonon Self-Energy Effects in Migdal-Eliashberg Theory (F Marsiglio)Electron-Phonon Interaction and Superconductivity in BaxK1-xBiO3 (K Motizuki et al)The Effect of Strong Coulomb Correlations on Electron-Phonon Interactions in the Copper Oxides: Implications for Transport (J H Kim et al)Zinc Substitution Effects on the Superconducting Properties for Ld1.85Ce0.15CuO4-δ (V García-Vázquez et al)Manifestations of the e-ph Interaction: A Summary (R Baquero) Readership: Condensed matter physicists, applied physicists, chemists, electrical engineers and materials scientists. keywords: