Electron-Phonon Interactions and Phase Transitions


Book Description

This NATO Advanced Study Institute was the fourth in a series devoted to the subject of phase transitions and instabilities with particular attention to structural phase transforma~ions. Beginning wi th the first Geilo institute in 19'(1 we have seen the emphasis evolve from the simple quasiharmonic soft mode description within the Landau theory, through the unexpected spectral structure re presented by the "central peak" (1973), to such subjects as melting, turbulence and hydrodynamic instabilities (1975). Sophisticated theoretical techniques such as scaling laws and renormalization group theory developed over the same period have brought to this wide range of subjects a pleasing unity. These institutes have been instrumental in placing structural transformations clearly in the mainstream of statistical physics and critical phenomena. The present Geilo institute retains some of the counter cul tural flavour of the first one by insisting whenever possible upon peeking under the skirts of even the most successful phenomenology to catch a glimpse of the underlying microscopic processes. Of course the soft mode remains a useful concept, but the major em phasis of this institute is the microscopic cause of the mode softening. The discussions given here illustrate that for certain important classes of solids the cause lies in the electron phonon interaction. Three major types of structural transitions are considered. In the case of metals and semimetals, the electron phonon interaction relie6 heavily on the topology of the Fermi surface.







Quantum Theory and Symmetries


Book Description

This volume of the CRM Conference Series is based on a carefully refereed selection of contributions presented at the "11th International Symposium on Quantum Theory and Symmetries", held in Montreal, Canada from July 1-5, 2019. The main objective of the meeting was to share and make accessible new research and recent results in several branches of Theoretical and Mathematical Physics, including Algebraic Methods, Condensed Matter Physics, Cosmology and Gravitation, Integrability, Non-perturbative Quantum Field Theory, Particle Physics, Quantum Computing and Quantum Information Theory, and String/ADS-CFT. There was also a special session in honour of Decio Levi. The volume is divided into sections corresponding to the sessions held during the symposium, allowing the reader to appreciate both the homogeneity and the diversity of mathematical tools that have been applied in these subject areas. Several of the plenary speakers, who are internationally recognized experts in their fields, have contributed reviews of the main topics to complement the original contributions. .




Electron-Phonon Interaction in Conventional and Unconventional Superconductors


Book Description

The problem of conventional, low-temperature superconductivity has been regarded as solved since the seminal work of Bardeen, Cooper, and Schrieffer (BCS) more than 50 years ago. However, the theory does not allow accurate predictions of some of the most fundamental properties of a superconductor, including the superconducting energy gap on the Fermi surface. This thesis describes the development and scientific implementation of a new experimental method that puts this old problem into an entirely new light. The nominee has made major contributions to the development and implementation of a new experimental method that enhances the resolution of spectroscopic experiments on dispersive lattice-vibrational excitations (the "glue" responsible for Cooper pairing of electrons in conventional superconductors) by more than two orders of magnitude. Using this method,he has discovered an unexpected relationship between the superconducting energy gap and the geometry of the Fermi surface in the normal state, both of which leave subtle imprints in the lattice vibrations that could not be resolved by conventional spectroscopic methods. He has confirmed this relationship on two elemental superconductors and on a series of metallic alloys. This indicates that a mechanism qualitatively beyond the standard BCS theory determines the magnitude and anisotropy of the superconducting gap.




Electron-phonon Interaction And Lattice Dynamics In High Tc Superconductors


Book Description

Understanding the mechanism of the high-temperature superconductors has been a very important topic in condensed matter physics. Researchers have been trying to explain the role of electron-phonon interaction (EPI) in cuprates. Some important properties of the cuprates could not be explained by conventional BCS theory. This book contains the experimental and theoretical studies on the EPI. The experimental part covers the results of angle-resolved photoemission spectroscopy (ARPES), isotopic effect, elastic neutron scattering study of electron-phonon, lattice role and so on. The theoretical part covers the electron-phonon, polaron and bipolaron, effect of lattice, fine structure in the tunnelling spectra of electron-doped cuprates, identification of the bulk pairing symmetry in high-temperature superconductors.Students and researchers interested in high-temperature superconductors, especially the EPI in cuprates will find this title very useful.







Photoferroelectrics


Book Description

Since Valasek's discovery of the ferroelectric properties of Rochelle salt nearly 60 years ago, ferroelectricity has been regarded as one of the tradi tional branches of dielectric physics. It has had important applications in lattice dynamics, quantum electronics, and nonlinear optics. The study of electron processes in ferroelectrics was begun with VUL's investigations of the ferroelectric properties of barium titanate [1.1]. In trinsic and extrinsic optical absorption, band structure, conductivity and photoconductivity, carrier mobility. and transport mechanisms were examined in this compound, and in other perovskite ferroelectric semiconductors. An important discovery was that of the highly photosensitive photoconducting ferroelectrics of type AVBVICVIII (e.g. SbSI) by MERZ et al. in 1962 [1.2,3]. A large number of ferroelectric semiconductors (some photosensitive, some not) are now known, including broad-band materials (e.g. lithium niobate, lithium tantalate, barium and strontium niobate, and type-A~B~I compounds), BI and narrow-band semiconductors (e.g. type_AIVB compounds). A series of improper ferroelectric semiconductors and photosensitive ferroelastics have been discovered, of which Sb 0 I is an example. s 7 Owing to the uncertainty of their band structure, the difficulty in deter mining the nature of the levels, the complexity of alloying, and their gen erally low mobility values, ferroelectrics are rarely of interest regarded as nonlinear semiconductors. The most fruitful approach has been the study of the influence of electrons (especially nonequilibrium electrons) and electron excitations on phase transitions and ferroelectric properties. A large group of phenomena have recently been discovered and investigated.




Phase Transitions in Materials


Book Description

A clear, concise and rigorous textbook covering phase transitions in the context of advances in electronic structure and statistical mechanics.




Fullerene Research, 1994-1996


Book Description

The book is a follow-up to the computerized fullerene bibliography related to the 1985-1993 period. It is a well-indexed overview of the journal literature on a topic for which the 1996 Nobel Prize in Chemistry was awarded. It is an indispensable tool for any specialist interested in the literature of one of the most researched interdisciplinary topics in the sciences.




Cooperative Phenomena in Jahn—Teller Crystals


Book Description

This book by Kaplan and Vekhter brings together the molecular world of the chemist with the condensed matter world of the physicist. Prior to the collapse of the Soviet Union, chemists in the West devoted lit to relationships between molecular electronic structure and tle attention solid-state vibronic phenomena. Treating quantum mechanical problems wherein the adiabatic Born-Oppenheimer approximation fails was done by "brute force. " With bigger and better computers available in the West, molecular orbital calculations were done on observed and conceived static structures with little concern for any cooperativity of vibrational behavior that might connect these states. While it had long been understood in the West that situations do occur in which different static structures are found for molecules that have identical or nearly identical electronic structures, little attention had been paid to understanding the vibrational states that could connect such structures. It was easier to calculate the electronic structure observed with several possible distortions than to focus on ways to couple electronic and vibrational behavior. In the former Soviet Union, computational power was not as acces sible as in the West. Much greater attention, therefore, was devoted to conserving computational time by considering fundamental ways to han dle the vibrational connectivity between degenerate or nearly degenerate electronic states.