Electronic Control of Switched Reluctance Machines


Book Description

Switched reluctance motors have steadily increased in commercial importance since their introduction in the early 1980's, while their technology - especially of their electronic control - has made great progress. Their unique characteristics introduce a delicate balance, in which the copper and iron are diminished in quantity, complexity and cost, in favour of a greater reliance on sophistication in the controller. Thus mastery of the control is the key challenge in the application of these machines. This book is intended for engineer's in industry and in the large research community in electrical machines and drives. It introduces the techniques for controlling switched reluctance machines, starting from first principles and building up to the most advanced forms of sensorless control. It covers the recent advances in electronic control and includes aspects of motion control, automation, acoustic noise reduction and energy efficiency. - Covers the recent changes in control technology - Includes up-to-date equipment and methods - Contains applications and case studies




Modelling and Control of Switched Reluctance Machines


Book Description

Today, switched reluctance machines (SRMs) play an increasingly important role in various sectors due to advantages such as robustness, simplicity of construction, low cost, insensitivity to high temperatures, and high fault tolerance. They are frequently used in fields such as aeronautics, electric and hybrid vehicles, and wind power generation. This book is a comprehensive resource on the design, modeling, and control of SRMs with methods that demonstrate their good performance as motors and generators.




Switched Reluctance Motor Drives


Book Description

The switched reluctance machine (SRM) is the least expensive electrical machine to produce, yet one of the most reliable. As such, research has blossomed during the last decade, and the SRM and variable drive systems using SRMs are receiving considerable attention from industry. Because they require a power electronic converter and controller to function, however, successful realization of an SRM variable drive system demands an understanding of the converter and controller subsystems and their integration with the machine. Switched Reluctance Motor Drives provides that understanding. It presents a unified view of the machine and its drive system from all of its system and subsystem aspects. With a careful balance of theory and implementation, the author develops the analysis and design of SRMs from first principles, introduces a wide variety of power converters available for driving the SRM, and systematically presents both low- and high-performance controllers. The book includes an in-depth study of acoustic noise and its minimization along with application examples that include comparisons between ac and dc drives and SRM drive. The result is the first book that provides a state-of-the-art knowledge of SRMs, power converters, and their use with both sensor-based and sensorless controllers. Switched Reluctance Motor Drives enables both students and engineers to learn all aspects of SRM drive systems and appreciate the interdependence of the various subsystems in performance optimization.







Switched Reluctance Motor Drives


Book Description

Electric motors are the largest consumer of electric energy and they play a critical role in the growing market for electrification. Due to their simple construction, switched reluctance motors (SRMs) are exceptionally attractive for the industry to respond to the increasing demand for high-efficiency, high-performance, and low-cost electric motors with a more secure supply chain. Switched Reluctance Motor Drives: Fundamentals to Applications is a comprehensive textbook covering the major aspects of switched reluctance motor drives. It provides an overview of the use of electric motors in the industrial, residential, commercial, and transportation sectors. It explains the theory behind the operation of switched reluctance motors and provides models to analyze them. The book extensively concentrates on the fundamentals and applications of SRM design and covers various design details, such as materials, mechanical construction, and controls. Acoustic noise and vibration is the most well-known issue in switched reluctance motors, but this can be reduced significantly through a multidisciplinary approach. These methodologies are explained in two chapters of the book. The first covers the fundamentals of acoustic noise and vibration so readers have the necessary tools to analyze the problems and explains the surface waves, spring-mass models, forcing harmonics, and mode shapes that are utilized in modeling and analyzing acoustic noise and vibration. The second applies these fundamentals to switched reluctance motors and provides examples for determining the sources of any acoustic noise in switched reluctance motors. In the final chapter two SRM designs are presented and proposed as replacements for permanent magnet machines in a residential HVAC application and a hybrid-electric propulsion application. It also shows a high-power and compact converter design for SRM drives. Features: Comprehensive coverage of switched reluctance motor drives from fundamental principles to design, operation, and applications A specific chapter on electric motor usage in industrial, residential, commercial, and transportation applications to address the benefits of switched reluctance machines Two chapters address acoustic noise and vibration in detail Numerous illustrations and practical examples on the design, modeling, and analysis of switched reluctance motor drives Examples of switched reluctance motor and drive design




Switched Reluctance Motor


Book Description

In the last years, the switched reluctance machines (SRMs) have been the subject of significant developments. SRMs are gaining much interest because of their simplicity in structures, high-output power, high starting torque, wide speed range, rugged and robust construction, reliability, and low manufacturing costs, which make these machines viable for many applications. SRMs include machines of different structures whose common property is the significant variation in the shape of the air gap during rotation. The use of advanced control technologies makes possible the integration of the mechanical and electrical conversion systems in their optimal mode of operation. Different strategies of control can be applied to SRMs, depending on their mode of functioning and the purpose of their applications. The goal of this book is to present recent works on concept, control, and applications in switched reluctance machines.




Electric Vehicle Machines and Drives


Book Description

A timely comprehensive reference consolidates the research and development of electric vehicle machines and drives for electric and hybrid propulsions • Focuses on electric vehicle machines and drives • Covers the major technologies in the area including fundamental concepts and applications • Emphasis the design criteria, performance analyses and application examples or potentials of various motor drives and machine systems • Accompanying website includes the simulation models and outcomes as supplementary material




The Key Technologies for Powertrain System of Intelligent Vehicles Based on Switched Reluctance Motors


Book Description

This book is intended for engineer’s in automotive industry and in research community of electrical machines. This book systematically focus on all the major aspects of switched reluctance motor for intelligent electric vehicle applications, including optimization design, drive system control, regenerative braking control, and motor-suspension system control, which is particularly suited for readers who are interested to learn the theory of the motor used for intelligent electric vehicles.The comprehensive and systematic treatment of practical issues around switched reluctance motor considering vehicle requirments is one of the major features of the book. The book can benefit researchers, engineers, and graduate students in fields of switched reluctance motor, electric vehicle drive system, regenerative braking system, motor-suspension system, etc.




Advanced Electrical Drives


Book Description

Electrical drives convert in a controlled manner, electrical energy into mechanical energy. Electrical drives comprise an electrical machine, i.e. an electro-mechanical energy converter, a power electronic converter, i.e. an electrical-to-electrical converter, and a controller/communication unit. Today, electrical drives are used as propulsion systems in high-speed trains, elevators, escalators, electric ships, electric forklift trucks and electric vehicles. Advanced control algorithms (mostly digitally implemented) allow torque control over a high-bandwidth. Hence, precise motion control can be achieved. Examples are drives in robots, pick-and-place machines, factory automation hardware, etc. Most drives can operate in motoring and generating mode. Wind turbines use electrical drives to convert wind energy into electrical energy. More and more, variable speed drives are used to save energy for example, in air-conditioning units, compressors, blowers, pumps and home appliances. Key to ensure stable operation of a drive in the aforementioned applications are torque control algorithms. In Advanced Electrical Drives, a unique approach is followed to derive model based torque controllers for all types of Lorentz force machines, i.e. DC, synchronous and induction machines. The rotating transformer model forms the basis for this generalized modeling approach that ultimately leads to the development of universal field-oriented control algorithms. In case of switched reluctance machines, torque observers are proposed to implement direct torque algorithms. From a didactic viewpoint, tutorials are included at the end of each chapter. The reader is encouraged to execute these tutorials to familiarize him or herself with all aspects of drive technology. Hence, Advanced Electrical Drives encourages “learning by doing”. Furthermore, the experienced drive specialist may find the simulation tools useful to design high-performance controllers for all sorts of electrical drives.




Electrical Machines and Drives


Book Description

This book aims to offer a thorough study and reference textbook on electrical machines and drives. The basic idea is to start from the pure electromagnetic principles to derive the equivalent circuits and steady-state equations of the most common electrical machines (in the first parts). Although the book mainly concentrates on rotating field machines, the first two chapters are devoted to transformers and DC commutator machines. The chapter on transformers is included as an introduction to induction and synchronous machines, their electromagnetics and equivalent circuits. Chapters three and four offer an in-depth study of induction and synchronous machines, respectively. Starting from their electromagnetics, steady-state equations and equivalent circuits are derived, from which their basic properties can be deduced. The second part discusses the main power-electronic supplies for electrical drives, for example rectifiers, choppers, cycloconverters and inverters. Much attention is paid to PWM techniques for inverters and the resulting harmonic content in the output waveform. In the third part, electrical drives are discussed, combining the traditional (rotating field and DC commutator) electrical machines treated in the first part and the power electronics of part two. Field orientation of induction and synchronous machines are discussed in detail, as well as direct torque control. In addition, also switched reluctance machines and stepping motors are discussed in the last chapters. Finally, part 4 is devoted to the dynamics of traditional electrical machines. Also for the dynamics of induction and synchronous machine drives, the electromagnetics are used as the starting point to derive the dynamic models. Throughout part 4, much attention is paid to the derivation of analytical models. But, of course, the basic dynamic properties and probable causes of instability of induction and synchronous machine drives are discussed in detail as well, with the derived models for stability in the small as starting point. In addition to the study of the stability in the small, a chapter is devoted to large-scale dynamics as well (e.g. sudden short-circuit of synchronous machines). The textbook is used as the course text for the Bachelor’s and Master’s programme in electrical and mechanical engineering at the Faculty of Engineering and Architecture of Ghent University. Parts 1 and 2 are taught in the basic course ’Fundamentals of Electric Drives’ in the third bachelor. Part 3 is used for the course ’Controlled Electrical Drives’ in the first master, while Part 4 is used in the specialised master on electrical energy.