Fundamentals of Electronics 1


Book Description

Electronics has undergone important and rapid developments over the last 60 years, which have generated a large range of theoretical and practical notions. This book presents a comprehensive treatise of the evolution of electronics for the reader to grasp both fundamental concepts and the associated practical applications through examples and exercises. This first volume of the Fundamentals of Electronics series comprises four chapters devoted to elementary devices, i.e. diodes, bipolar junction transistors and related devices, field effect transistors and amplifiers, their electrical models and the basic functions they can achieve. Volumes to come will deal with systems in the continuous time regime, the various aspects of sampling signals and systems using analog (A) and digital (D) treatments, quantized level systems, as well as DA and AD converter principles and realizations.




Fundamentals of Electronics


Book Description

This book, Electronic Devices and Circuit Application, is the first of four books of a larger work, Fundamentals of Electronics. It is comprised of four chapters describing the basic operation of each of the four fundamental building blocks of modern electronics: operational amplifiers, semiconductor diodes, bipolar junction transistors, and field effect transistors. Attention is focused on the reader obtaining a clear understanding of each of the devices when it is operated in equilibrium. Ideas fundamental to the study of electronic circuits are also developed in the book at a basic level to lessen the possibility of misunderstandings at a higher level. The difference between linear and non-linear operation is explored through the use of a variety of circuit examples including amplifiers constructed with operational amplifiers as the fundamental component and elementary digital logic gates constructed with various transistor types. Fundamentals of Electronics has been designed primarily for use in an upper division course in electronics for electrical engineering students. Typically such a course spans a full academic years consisting of two semesters or three quarters. As such, Electronic Devices and Circuit Applications, and the following two books, Amplifiers: Analysis and Design and Active Filters and Amplifier Frequency Response, form an appropriate body of material for such a course. Secondary applications include the use in a one-semester electronics course for engineers or as a reference for practicing engineers.




Digital Electronics 1


Book Description

The omnipresence of electronic devices in our everyday lives has been accompanied by the downscaling of chip feature sizes and the ever increasing complexity of digital circuits. This book is devoted to the analysis and design of digital circuits, where the signal can assume only two possible logic levels. It deals with the basic principles and concepts of digital electronics. It addresses all aspects of combinational logic and provides a detailed understanding of logic gates that are the basic components in the implementation of circuits used to perform functions and operations of Boolean algebra. Combinational logic circuits are characterized by outputs that depend only on the actual input values. Efficient techniques to derive logic equations are proposed together with methods of analysis and synthesis of combinational logic circuits. Each chapter is well structured and is supplemented by a selection of solved exercises covering logic design practices.




Basic Electronics


Book Description




Electronics I Essentials


Book Description

REA’s Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Electronics I covers fundamentals of semiconductor devices, junction diodes, bipolar junction transistors, power supplies, multitransistor circuits, small signals, low-frequency analysis and design, audio-frequency linear power amplifiers, feedback amplifiers, and frequency response of amplifiers.




Make: Electronics


Book Description

"A hands-on primer for the new electronics enthusiast"--Cover.




Organic Electronics 1


Book Description

Due to their special properties, organic semiconductors enable the development of large-area, low-cost devices, paving the way for flexible and nomadic applications that advantageously replace those made with traditional semiconductors. This book describes the properties and deposition methods of organic semiconductors, transparent conductive materials or metals which are used in the fabrication of organic devices. The physical processes (optical, electrical and interface) that control the mechanisms in the formation and transport of the charge carriers of the materials are studied and explained in detail. Organic Electronics 1 introduces the fundamental and applied aspects of the field of organic electronics. It is intended for researchers and students in university programs or engineering schools specializing in electronics, energy and materials.




Make: Electronics


Book Description

"This is teaching at its best!" --Hans Camenzind, inventor of the 555 timer (the world's most successful integrated circuit), and author of Much Ado About Almost Nothing: Man's Encounter with the Electron (Booklocker.com) "A fabulous book: well written, well paced, fun, and informative. I also love the sense of humor. It's very good at disarming the fear. And it's gorgeous. I'll be recommending this book highly." --Tom Igoe, author of Physical Computing and Making Things Talk Want to learn the fundamentals of electronics in a fun, hands-on way? With Make: Electronics, you'll start working on real projects as soon as you crack open the book. Explore all of the key components and essential principles through a series of fascinating experiments. You'll build the circuits first, then learn the theory behind them! Build working devices, from simple to complex You'll start with the basics and then move on to more complicated projects. Go from switching circuits to integrated circuits, and from simple alarms to programmable microcontrollers. Step-by-step instructions and more than 500 full-color photographs and illustrations will help you use -- and understand -- electronics concepts and techniques. Discover by breaking things: experiment with components and learn from failure Set up a tricked-out project space: make a work area at home, equipped with the tools and parts you'll need Learn about key electronic components and their functions within a circuit Create an intrusion alarm, holiday lights, wearable electronic jewelry, audio processors, a reflex tester, and a combination lock Build an autonomous robot cart that can sense its environment and avoid obstacles Get clear, easy-to-understand explanations of what you're doing and why




Introduction to Printed Electronics


Book Description

This book describes in detail modern technologies for printed electronics, explaining how nanotechnology and modern printing technology are merging to revolutionize electronics fabrication of thin, lightweight, large and inexpensive products. Readers will benefit from the explanations of materials, devices and circuits used to design and implement the latest applications of printed electronics, such as thin flexible OLED displays, organic solar cells, OLED lighting, smart wallpaper, sensors, logic, memory and more.




Nonlinear Electronics 1


Book Description

Nonlinear Electronics 1: Nonlinear Dipoles, Harmonic Oscillators and Switching Circuits deals with the appearance of nonlinear electronic circuits and their behavior. The book studies a number of circuits that interface between analog and digital electronics, including astable, monostable, bistable, Schmitt trigger, and analog-to-digital and digital-to-analog conversion. Users will find a complete resource that deals with all aspects of these circuits, starting from the discrete component and gradually working to the integrated circuit. - Presents non-linear electronic circuits and their behavior - Discusses relaxation oscillators - Treats subject matter from the discrete element, to the integrated device - Present interface circuits, analog-to-digital conversion, analog-to-analog, and PLL (phase locked loop)