Electrospinning for Advanced Biomedical Applications and Therapies


Book Description

The main focus of this book is on the development of electrospun membranes for advanced biomedical technologies including tissue engineering and drug delivery devices.Serving as a reference book for the beginner this book also provides an in-depth analysis of the challenges to be overcome in the future. Each section of the book covers not only the developments in the various fields of application of the electrospun meshes, but also the advances required for the successful development of new and high-end biomedical applications.Important areas tackled include:Biomedical applications of the technologySpecific aspects of equipments and materialsSurface characterization and functionalizationIn vitro testing with electrospun meshes. In all of these areas the main achievements, challenges ahead and expert opinions are given, making this book highly unusual in the level of detail covered.







Electrospun Nanofibers from Bioresources for High-Performance Applications


Book Description

Nanofibers are possible solutions for a wide spectrum of research and commercial applications and utilizing inexpensive bio-renewable and agro waste materials to produce nanofibers can lower manufacturing cost via electrospinning. This book explains synthesis of green, biodegradable, and environmentally friendly nanofibers from bioresources, their mechanical and morphological characteristics along with their applications across varied areas. It gives an elaborate idea on conductive polymers for tissue engineering application as well. Features: Provides insight about electrospun nanofibers from green, biodegradable and environmentally friendly bio resources. Reviews surface characterization of electrospun fibers. Covers diversified applications such as cancer treatment, COVID-19 solutions, food packaging applications, textile materials, and flexible electronic devices. Describes the combined use of 3D printing and electrospinning for tissue engineering scaffolds. Includes Melt electrospinning technique and its advantages over Solution electrospinning This book aims at Researchers and Graduate Students in Material Science and Engineering, Environmental Engineering, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Biomedical Engineering.




Electrospun Nanofibers


Book Description

This book presents the development of electrospun materials, fundamental principles of electrospinning process, controlling parameters, electrospinning strategies, and electrospun nanofibrous structures with specific properties for applications in tissue engineering and regenerative medicine, textile, water treatment, sensor, and energy fields. This book can broadly be divided into three parts: the first comprises basic principles of electrospinning process, general requirements of electrospun materials and advancement in electrospinning technology, the second part describes the applications of electrospun materials in different fields and future prospects, while the third part describes applications that can be used in advanced manufacturing based on conjoining electrospinning and 3D printing. Electrospinning is the most successful process for producing functional nanofibers and nanofibrous membranes with superior chemical and physical properties. The unique properties of electrospun materials including high surface to volume ratio, flexibility, high mechanical strength, high porosity, and adjustable nanofiber and pore size distribution make them potential candidates in a wide range of applications in biomedical and engineering areas. Electrospinning is becoming more efficient and more specialized in order to produce particular fiber types with tunable diameter and morphology, tunable characteristics, having specific patterns and 3D structures. With a strong focus on fundamental materials science and engineering, this book provides systematic and comprehensive coverage of the recent developments and novel perspectives of electrospun materials. This comprehensive book includes chapters that discuss the latest and emerging applications of nanofiber technology in various fields, specifically in areas such as wearable textile, biomedical applications, energy generation and storage, water treatment and environmental remediation, and sensors such as biomarkers in healthcare and biomedical engineering. Despite all these advancements, there are still challenges to be addressed and overcome for nanofiber technology to move towards maturation.




Nanoengineering of Biomaterials


Book Description

A comprehensive discussion of various types of nanoengineered biomaterials and their applications In Nanoengineering of Biomaterials: Drug Delivery & Biomedical Applications, an expert team of chemists delivers a succinct exploration of the synthesis, characterization, in-vitro and in-vivo drug molecule release, pharmacokinetic activity, pharmacodynamic activity, and the biomedical applications of several types of nanoengineered biomaterials. The editors have also included resources to highlight the most current developments in the field. The book is a collection of valuable and accessible reference sources for researchers in materials chemistry and related disciplines. It uses a functions-directed approach to using organic and inorganic source compounds that translate into biological systems as scaffolds, micelles, dendrimers, and other delivery systems. Nanoengineering of Biomaterials offers readers up-to-date chemistry and material science insights that are readily transferrable to biomedical systems. The book also includes: Thorough introductions to alginate nanoparticle delivery of therapeutics and chitosan-based nanomaterials in biological applications Comprehensive explorations of nanostructured carrageenan as a drug carrier, gellan gum nanoparticles in drug delivery, and guar-gum nanoparticles in the delivery of bioactive molecules Practical discussions of protein-based nanoparticles for drug delivery, solid lipid nanoparticles as drug carriers, and pH-responsive nanoparticles in therapy In-depth examinations of stimuli-responsive nano carriers in drug targeting Perfect for pharmaceutical chemists, materials scientists, polymer chemists, life scientists, and medicinal chemists, Nanoengineering of Biomaterials: Drug Delivery and Biomedical Applications is also an indispensable resource for biologists and bioengineers seeking a one-stop reference on the transferability of materials chemistry and nanotechnology to biomedicine.




Electrospinning


Book Description

Focuses on basic aspects of nano/microfibers made by electrospinning with details on spinning recipes, characterization techniques and chemistry of the polymers in use. The basic understanding provided in the book, is useful for producing 1D and 3D fibrous structures with specific properties for applications, e.g. textiles, membranes, reinforcements, catalysis, filters or biomedical uses. Students and practitioners will find great value in the step by step instructions how to manufacture nanofibers. - Electrospinning equipment - History of electrospinning and nanofibers -characterization-fundamentals of electrospun fibers - Ready-made recipes for spinning solutions - Conditions for the productions of highly diverse fiber morphologies and arrangements - Chemistry of fiber forming materials




Applied Chemistry and Chemical Engineering, Volume 3


Book Description

Understanding mathematical modeling is fundamental in chemical engineering. This book reviews, introduces, and develops the mathematical models that are most frequently encountered in sophisticated chemical engineering domains. The volume provides a collection of models illustrating the power and richness of the mathematical sciences in supplying insight into the operation of important real-world systems. It fills a gap within modeling texts, focusing on applications across a broad range of disciplines. The first part of the book discusses the general components of the modeling process and highlights the potential of modeling in the production of nanofibers. These chapters discuss the general components of the modeling process and the evolutionary nature of successful model building in the electrospinning process. Electrospinning is the most versatile technique for the preparation of continuous nanofibers obtained from numerous materials. This section of book summarizes the state-of-the art in electrospinning as well as updates on theoretical aspects and applications. Part 2 of the book presents a selection of special topics on issues in applied chemistry and chemical engineering, including nanocomposite coating processes by electrocodeposition method, entropic factors conformational interactions, and the application of artificial neural network and meta-heuristic algorithms. This volume covers a wide range of topics in mathematical modeling, computational science, and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines.




Handbook of Research on Functional Materials


Book Description

Handbook of Research on Functional Materials: Principles, Capabilities and Limitations covers a broad range of modern materials and provides industry professionals and researchers in polymer science and technology with a single, comprehensive book summarizing all aspects involved in the modern materials production chain. The book focuses on industr




Thermal and Nonthermal Encapsulation Methods


Book Description

Encapsulation is a topic of interest across a wide range of scientific and industrial areas, from pharmaceutics to food and agriculture, for the protection and controlled release of various substances during transportation, storage, and consumption. Since encapsulated materials can be protected from external conditions, encapsulation enhances their stability and maintains their viability. This book offers a comprehensive review of conventional and modern methods for encapsulation. It covers various thermal and nonthermal encapsulation methods applied across a number of industries, including freeze drying, spray drying, spray chilling and spray cooling, electrospinning/electrospraying, osmotic dehydration, extrusion, air-suspension coating, pan coating, and vacuum drying. The book presents basic fundamentals, principles, and applications of each method, enabling the reader to gain extended knowledge. The choice of the most suitable encapsulation technique is based on the raw materials, the required size, and the desirable characteristics of the final products.




Electrospun Nanofibers


Book Description

Electrospun Nanofibers covers advances in the electrospinning process including characterization, testing and modeling of electrospun nanofibers, and electrospinning for particular fiber types and applications. Electrospun Nanofibers offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science. Electrospinning is the most commercially successful process for the production of nanofibers and rising demand is driving research and development in this field. Rapid progress is being made both in terms of the electrospinning process and in the production of nanofibers with superior chemical and physical properties. Electrospinning is becoming more efficient and more specialized in order to produce particular fiber types such as bicomponent and composite fibers, patterned and 3D nanofibers, carbon nanofibers and nanotubes, and nanofibers derived from chitosan. - Provides systematic and comprehensive coverage of the manufacture, properties, and applications of nanofibers - Covers recent developments in nanofibers materials including electrospinning of bicomponent, chitosan, carbon, and conductive fibers - Brings together expertise from academia and industry to provide comprehensive, up-to-date information on nanofiber research and development - Offers systematic and comprehensive coverage for academic researchers, industry professionals, and postgraduate students working in the field of fiber science