Six Easy Pieces


Book Description

Richard P. Feynman (1918–1988) was widely recognized as the most creative physicist of the post–World War II period. His career was extraordinarily expansive. From his contributions to the development of the atomic bomb a Los Alamos during World War II to his work in quantum electrodynamics, for which he was awarded the Nobel Prize in 1965, Feynman was celebrated for his brilliant and irreverent approach to physics.It was Feynman's outrageous and scintillating method of teaching that earned him legendary status among students and professors of physics. From 1961–1963, Feynman, at the California Institute of Technology, delivered a series of lectures that revolutionized the teaching of physics around the world. Six Easy Pieces, taken from the famous Lectures on Physics, represents the most accessible material from this series. In these six chapters, Feynman introduces the general reader to the following topics: atoms, basic physics, the relationship of physics to other topics, energy, gravitation, and quantum force. With his dazzling and inimitable wit, Feynman presents each discussion without equations or technical jargon.Readers will remember how—using ice water and rubber—Feynman demonstrated with stunning simplicity to a nationally televised audience the physics of the 1986 Challenger disaster. It is precisely this ability—the clear and direct illustration of complex theories—that made Richard Feynman one of the most distinguished educators in the world. Filled with wonderful examples and clever illustrations, Six Easy Pieces is the ideal introduction to the fundamentals of physics by one of the most admired and accessible scientists of our time.




Facts And Mysteries In Elementary Particle Physics (Revised Edition)


Book Description

This book provides a comprehensive overview of modern particle physics accessible to anyone with a true passion for wanting to know how the universe works. We are introduced to the known particles of the world we live in. An elegant explanation of quantum mechanics and relativity paves the way for an understanding of the laws that govern particle physics. These laws are put into action in the world of accelerators, colliders and detectors found at institutions such as CERN and Fermilab that are in the forefront of technical innovation. Real world and theory meet using Feynman diagrams to solve the problems of infinities and deduce the need for the Higgs boson.Facts and Mysteries in Elementary Particle Physics offers an incredible insight from an eyewitness and participant in some of the greatest discoveries in 20th century science. From Einstein's theory of relativity to the spectacular discovery of the Higgs particle, this book will fascinate and educate anyone interested in the world of quarks, leptons and gauge theories.This book also contains many thumbnail sketches of particle physics personalities, including contemporaries as seen through the eyes of the author. Illustrated with pictures, these candid sketches present rare, perceptive views of the characters that populate the field.The Chapter on Particle Theory, in a pre-publication, was termed 'superbly lucid' by David Miller in Nature (Vol. 396, 17 Dec. 1998, p. 642).




Elementary Particles and the Laws of Physics


Book Description

A fascinating and accessible book by Nobel laureates Richard Feynman and Steven Weinberg.




Theory of Fundamental Processes


Book Description

This book considers the basic ideas of quantum mechanics, treating the concept of amplitude and discusses relativity and the idea of anti-particles and explains quantum electrodynamics. It provides experienced researchers with an invaluable introduction to fundamental processes.




Concepts of Elementary Particle Physics


Book Description

This particle physics textbook for senior undergraduates and early graduates explains the Standard Model of particle physics, both the theory and its experimental basis. The point of view is thoroughly modern. Theory relevant to the experiments is developed in detail but in a simplified way without needing full knowledge of quantum field theory.




Introduction to Elementary Particles


Book Description




From the Universe to the Elementary Particles


Book Description

In this book, the author leads the reader, step by step and without any advanced mathematics, to a clear understanding of the foundations of modern elementary particle physics and cosmology. He also addresses current and controversial questions on topics such as string theory. The book contains gentle introductions to the theories of special and general relativity, and also classical and quantum field theory. The essential aspects of these concepts are understood with the help of simple calculations; for example, the force of gravity as a consequence of the curvature of the space-time. Also treated are the Big Bang, dark matter and dark energy, as well as the presently known interactions of elementary particles: electrodynamics, the strong and the weak interactions including the Higgs boson. Finally, the book sketches as yet speculative theories: Grand Unification theories, supersymmetry, string theory and the idea of additional dimensions of space-time. Since no higher mathematical or physics expertise is required, the book is also suitable for college and university students at the beginning of their studies. Hobby astronomers and other science enthusiasts seeking a deeper insight than can be found in popular treatments will also appreciate this unique book.




University Physics


Book Description

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.




Can the Laws of Physics Be Unified?


Book Description

A concise introduction to the cutting-edge science of particle physics The standard model of particle physics describes our current understanding of nature's fundamental particles and their interactions, yet gaps remain. For example, it does not include a quantum theory of gravity, nor does it explain the existence of dark matter. Once complete, however, the standard model could provide a unified description of the very building blocks of the universe. Researchers have been chasing this dream for decades, and many wonder whether such a dream can ever be made a reality. Can the Laws of Physics Be Unified? is a short introduction to this exciting frontier of physics. The book is accessibly written for students and researchers across the sciences, and for scientifically minded general readers. Paul Langacker begins with an overview of the key breakthroughs that have shaped the standard model, and then describes the fundamental particles, their interactions, and their role in cosmology. He goes on to explain field theory, internal symmetries, Yang-Mills theories, strong and electroweak interactions, the Higgs boson discovery, and neutrino physics. Langacker then looks at the questions that are still unanswered: What is the nature of the mysterious dark matter and dark energy that make up roughly 95 percent of the universe? Why is there more matter than antimatter? How can we reconcile quantum mechanics and general relativity? Can the Laws of Physics Be Unified? describes the promising theoretical ideas and new experiments that could provide answers and weighs our prospects for establishing a truly unified theory of the smallest constituents of nature and their interactions.




Relativistic Quantum Mechanics of Leptons and Fields


Book Description

The material contained in this work concerns relativistic quantum mechanics, and as such pertains to classical fields. On the one hand it is meant to serve as a text on the subject, a desire stemming from the author's fruitless searches for an adequate, up-to-date reference when lecturing on these topics. At times the supplementary material was found to exceed by far that in the assigned text. On the other hand, there is some flavor of a monograph to what follows, most particularly in the later chapters, for a major goal is to demonstrate just how far we can advance our understanding of the behavior of stable particles and their interactions without introducing quantized fields. Those wishing to describe the world in this way may view the result as a point of departure, despite the fact that their wish remains unfulfilled. Confirmed quantum-field theorists, however, will doubtless view it as a summary of just why they feel compelled to quantize the fields. Approximately half the book is devoted to the single-particle Dirac equation and its solutions. A great deal of detail is provided in this respect, and the discus sion is reasonably comprehensive. The Dirac equation is extraordinarily important in its own right, particularly as a basis for quantum electrodynamics (QED), and is thus worthy of extensive study.