Moran's Principles of Engineering Thermodynamics


Book Description

Moran’s Principles of Engineering Thermodynamics, SI Version, continues to offer a comprehensive and rigorous treatment of classical thermodynamics, while retaining an engineering perspective. With concise, applications-oriented discussion of topics and self-test problems, this book encourages students to monitor their own learning. This classic text provides a solid foundation for subsequent studies in fields such as fluid mechanics, heat transfer and statistical thermodynamics, and prepares students to effectively apply thermodynamics in the practice of engineering. This edition is revised with additional examples and end-of-chapter problems to increase student comprehension.




People and Nature


Book Description

Now updated and expanded, People and Nature is a lively, accessible introduction to environmental anthropology that focuses on the interactions between people, culture, and nature around the world. Written by a respected scholar in environmental anthropology with a multi-disciplinary focus that also draws from geography, ecology, and environmental studies Addresses new issues of importance, including climate change, population change, the rise of the slow food and farm-to-table movements, and consumer-driven shifts in sustainability Explains key theoretical issues in the field, as well as the most important research, at a level appropriate for readers coming to the topic for the first time Discusses the challenges in ensuring a livable future for generations to come and explores solutions for correcting the damage already done to the environment Offers a powerful, hopeful future vision for improved relations between humans and nature that embraces the idea of community needs rather than consumption wants, and the importance of building trust as a foundation for a sustainable future




Introduction to Particle Technology


Book Description

Particle technology is a term used to refer to the science and technology related to the handling and processing of particles and powders. The production of particulate materials, with controlled properties tailored to subsequent processing and applications, is of major interest to a wide range of industries, including chemical and process, food, pharmaceuticals, minerals and metals companies and the handling of particles in gas and liquid solutions is a key technological step in chemical engineering. This textbook provides an excellent introduction to particle technology with worked examples and exercises. Based on feedback from students and practitioners worldwide, it has been newly edited and contains new chapters on slurry transport, colloids and fine particles, size enlargement and the health effects of fine powders. Topics covered include: Characterization (Size Analysis) Processing (Granulation, Fluidization) Particle Formation (Granulation, Size Reduction) Storage and Transport (Hopper Design, Pneumatic Conveying, Standpipes, Slurry Flow) Separation (Filtration, Settling, Cyclones) Safety (Fire and Explosion Hazards, Health Hazards) Engineering the Properties of Particulate Systems (Colloids, Respirable Drugs, Slurry Rheology) This book is essential reading for undergraduate students of chemical engineering on particle technology courses. It is also valuable supplementary reading for students in other branches of engineering, applied chemistry, physics, pharmaceutics, mineral processing and metallurgy. Practitioners in industries in which powders are handled and processed may find it a useful starting point for gaining an understanding of the behavior of particles and powders. Review of the First Edition taken from High Temperatures - High pressures 1999 31 243 – 251 "..This is a modern textbook that presents clear-cut knowledge. It can be successfully used both for teaching particle technology at universities and for individual study of engineering problems in powder processing."




An Introduction to Chemical Engineering Kinetics and Reactor Design


Book Description

A comprehensive introduction to chemical engineering kinetics Providing an introduction to chemical engineering kinetics and describing the empirical approaches that have successfully helped engineers describe reacting systems, An Introduction to Chemical Engineering Kinetics & Reactor Design is an excellent resource for students of chemical engineering. Truly introductory in nature, the text emphasizes those aspects of chemical kinetics and material and energy balances that form the broad foundation for understanding reactor design. For those seeking an introduction to the subject, the book provides a firm and lasting foundation for continuing study and practice.




Chemical Engineering


Book Description

'Chemical engineering is the field of applied science that employs physical, chemical, and biological rate processes for the betterment of humanity'. This opening sentence of Chapter 1 has been the underlying paradigm of chemical engineering. Chemical Engineering: An Introduction is designed to enable the student to explore the activities in which a modern chemical engineer is involved by focusing on mass and energy balances in liquid-phase processes. Problems explored include the design of a feedback level controller, membrane separation, hemodialysis, optimal design of a process with chemical reaction and separation, washout in a bioreactor, kinetic and mass transfer limits in a two-phase reactor, and the use of the membrane reactor to overcome equilibrium limits on conversion. Mathematics is employed as a language at the most elementary level. Professor Morton M. Denn incorporates design meaningfully; the design and analysis problems are realistic in format and scope.




Introduction to Chemical Processes


Book Description

"Introduction to Chemical Processes: Principles, Analysis, Synthesis, 2e is intended for use in an introductory, one-semester course for students in chemical engineering and related disciplines"--




Fluid Mechanics for Chemical Engineers with Microfluidics and CFD.


Book Description

This second edition contains extensive new coverage of both microfluidics and computational fluid dynamics, systematically demonstrating CFD through detailed examples using FlowLab and COMSOL Multiphysics. The chapter on turbulence has been extensively revised to address more complex and realistic challenges, including turbulent mixing and recirculating flows"--Jacket.




Industrial Crystallization


Book Description

Bridging the gap between theory and practice, this text provides the reader with a comprehensive overview of industrial crystallization. Newcomers will learn all of the most important topics in industrial crystallization, from key concepts and basic theory to industrial practices. Topics covered include the characterization of a crystalline product and the basic process design for crystallization, as well as batch crystallization, measurement techniques, and details on precipitation, melt crystallization and polymorphism. Each chapter begins with an introduction explaining the importance of the topic, and is supported by homework problems and worked examples. Real world case studies are also provided, as well as new industry-relevant information, making this is an ideal resource for industry practitioners, students, and researchers in the fields of industrial crystallization, separation processes, particle synthesis, and particle technology.