Elements of Chemistry


Book Description

The debt of modern chemistry to Antoine Lavoisier (1743–1794) is incalculable. With Lavoisier's discoveries of the compositions of air and water (he gave the world the term 'oxygen') and his analysis of the process of combustion, he was able to bury once and for all the then prevalent phlogiston doctrine. He also recognized chemical elements as the ultimate residues of chemical analysis and, with others, worked out the beginnings of the modern system of nomenclature. His premature death at the hands of a Revolutionary tribunal is undoubtedly one of the saddest losses in the history of science. Lavoisier's theories were promulgated widely by a work he published in 1789: Traité élémentairede Chimie. The famous English translation by Robert Kerr was issued a year later. Incorporating the notions of the "new chemistry," the book carefully describes the experiments and reasoning which led Lavoisier to his conclusions, conclusions which were generally accepted by the scientific community almost immediately. It is not too much to claim that Lavoisier's Traité did for chemistry what Newton's Principia did for physics, and that Lavoisier founded modern chemistry. Part One of the Traité covers the composition of the atmosphere and water, and related experiments, one of which (on vinous fermentation) permits Lavoisier to make the first explicit statement of the law of the conservation of matter in chemical change. The second part deals with the compounds of acids with various bases, giving extensive tables of compounds. Its most significant item, however, is the table of simple substances or elements — the first modern list of the chemical elements. The third section of the book reviews in minute detail the apparatus and instruments of chemistry and their uses. Some of these instruments, etc. are illustrated in the section of plates at the end. This new facsimile edition is enhanced by an introductory essay by Douglas McKie, University College London, one of the world's most eminent historians of science. Prof. McKie gives an excellent survey of historical developments in chemistry leading up to the Traité, Lavoisier's major contributions, his work in other fields, and offers a critical evaluation of the importance of this book and Lavoisier's role in the history of chemistry. This new essay helps to make this an authoritative, contemporary English-language edition of one of the supreme classics of science.




The Atmosphere (Classic Reprint)


Book Description

Excerpt from The Atmosphere The author desires to thank Professor Seward for his kind editorial help. To Dr G. F. O. Searle and to the late Mr H. 0. Jones he is indebted for many valuable criticismsand suggestions. About the Publisher Forgotten Books publishes hundreds of thousands of rare and classic books. Find more at www.forgottenbooks.com This book is a reproduction of an important historical work. Forgotten Books uses state-of-the-art technology to digitally reconstruct the work, preserving the original format whilst repairing imperfections present in the aged copy. In rare cases, an imperfection in the original, such as a blemish or missing page, may be replicated in our edition. We do, however, repair the vast majority of imperfections successfully; any imperfections that remain are intentionally left to preserve the state of such historical works.







Makers of Mathematics


Book Description

Each chapter of this accessible portrait of the evolution of mathematics examines the work of an individual — Archimedes, Descartes, Newton, Einstein, others — to explore the mathematics of his era. 1989 edition.




Electricity and Magnetism


Book Description

"This 1953 classic text for advanced undergraduates has been used by generations of physics majors. Requiring only some background in general physics and calculus, it offers in-depth coverage of the field and features problems at the end of each chapter -- solutions are available for download at the Dover website"--




Non-Equilibrium Statistical Mechanics


Book Description

Groundbreaking monograph by Nobel Prize winner for researchers and graduate students covers Liouville equation, anharmonic solids, Brownian motion, weakly coupled gases, scattering theory and short-range forces, general kinetic equations, more. 1962 edition.




The Functions of Mathematical Physics


Book Description

A modern classic, this clearly written, incisive textbook provides a comprehensive, detailed survey of the functions of mathematical physics, a field of study straddling the somewhat artificial boundary between pure and applied mathematics. In the 18th and 19th centuries, the theorists who devoted themselves to this field — pioneers such as Gauss, Euler, Fourier, Legendre, and Bessel — were searching for mathematical solutions to physical problems. Today, although most of the functions have practical applications, in areas ranging from the quantum-theoretical model of the atom to the vibrating membrane, some, such as those related to the theory of discontinuous groups, still remain of purely mathematical interest. Chapters One and Two examine orthogonal polynomials, with sections on such topics as the recurrence formula, the Christoffel-Darboux formula, the Weierstrass approximation theorem, and the application of Hermite polynomials to quantum mechanics. Chapter Three is devoted to the principal properties of the gamma function, including asymptotic expansions and Mellin-Barnes integrals. Chapter Four covers hypergeometric functions, including a review of linear differential equations with regular singular points, and a general method for finding integral representations. Chapters Five and Six are concerned with the Legendre functions and their use in the solutions of Laplace's equation in spherical coordinates, as well as problems in an n-dimension setting. Chapter Seven deals with confluent hypergeometric functions, and Chapter Eight examines, at length, the most important of these — the Bessel functions. Chapter Nine covers Hill's equations, including the expansion theorems.




An Introduction to Mathematics


Book Description

Concise volume for general students by prominent philosopher and mathematician explains what math is and does, and how mathematicians do it. "Lucid and cogent ... should delight you." — The New York Times. 1911 edition.




Tensor Analysis for Physicists


Book Description

This rigorous and advanced mathematical explanation of classic tensor analysis was written by one of the founders of tensor calculus. Its concise exposition of the mathematical basis of the discipline is integrated with well-chosen physical examples of the theory, including those involving elasticity, classical dynamics, relativity, and Dirac's matrix calculus. 1954 edition.




100 Great Problems of Elementary Mathematics


Book Description

Problems that beset Archimedes, Newton, Euler, Cauchy, Gauss, Monge, Steiner, and other great mathematical minds. Features squaring the circle, pi, and similar problems. No advanced math is required. Includes 100 problems with proofs.