Elements of Vorticity Aerodynamics


Book Description




Elements of Vorticity Aerodynamics


Book Description

This book opens with a discussion of the vorticity-dynamic formulation of the low Mach number viscous flow problem. It examines the physical aspects of the velocity and the vorticity fields, their instantaneous relationship, and the transport of vorticity in viscous fluids for steady and unsteady flows. Subsequently, using classical analyses it explores the mathematical aspects of vorticity dynamics and issues of initial and boundary conditions for the viscous flow problem. It also includes the evolution of the vorticity field which surrounds and trails behind airfoils and wings, generalizations of Helmholtz’ vortex theorems and the Biot-Savart Law. The book introduces a theorem that relates the aerodynamic force to the vorticity moment and reviews the applications of the theorem. Further, it presents interpretations of the Kutta-Joukowski theorem and Prandtl’s lifting line theory for vorticity dynamics and discusses wake integral methods. The virtual-mass effect is shown to be the seminal event in unsteady aerodynamics and a simple approach for evaluating virtual-mass forces on the basis of vorticity dynamics is presented. The book presents a modern viewpoint on vorticity dynamics as the framework for understanding and establishing the fundamental principles of viscous and unsteady aerodynamics. It is intended for graduate-level students of classical aerodynamics and researchers exploring the frontiers of fully unsteady and non-streamlined aerodynamics.







Wind Turbine Aerodynamics and Vorticity-Based Methods


Book Description

The book introduces the fundamentals of fluid-mechanics, momentum theories, vortex theories and vortex methods necessary for the study of rotors aerodynamics and wind-turbines aerodynamics in particular. Rotor theories are presented in a great level of details at the beginning of the book. These theories include: the blade element theory, the Kutta-Joukowski theory, the momentum theory and the blade element momentum method. A part of the book is dedicated to the description and implementation of vortex methods. The remaining of the book focuses on the study of wind turbine aerodynamics using vortex-theory analyses or vortex-methods. Examples of vortex-theory applications are: optimal rotor design, tip-loss corrections, yaw-models and dynamic inflow models. Historical derivations and recent extensions of the models are presented. The cylindrical vortex model is another example of a simple analytical vortex model presented in this book. This model leads to the development of different BEM models and it is also used to provide the analytical velocity field upstream of a turbine or a wind farm under aligned or yawed conditions. Different applications of numerical vortex methods are presented. Numerical methods are used for instance to investigate the influence of a wind turbine on the incoming turbulence. Sheared inflows and aero-elastic simulations are investigated using vortex methods for the first time. Many analytical flows are derived in details: vortex rings, vortex cylinders, Hill's vortex, vortex blobs etc. They are used throughout the book to devise simple rotor models or to validate the implementation of numerical methods. Several Matlab programs are provided to ease some of the most complex implementations.




Vorticity and Vortex Dynamics


Book Description

This book is a comprehensive and intensive monograph for scientists, engineers and applied mathematicians, as well as graduate students in fluid dynamics. It starts with a brief review of fundamentals of fluid dynamics, with an innovative emphasis on the intrinsic orthogonal decomposition of fluid dynamic process, by which one naturally identifies the content and scope of vorticity and vortex dynamics. This is followed by a detailed presentation of vorticity dynamics as the basis of later development. In vortex dynamics part the book deals with the formation, motion, interaction, stability, and breakdown of various vortices. Typical vortex structures are analyzed in laminar, transitional, and turbulent flows, including stratified and rotational fluids. Physical understanding of vertical flow phenomena and mechanisms is the first priority throughout the book. To make the book self-contained, some mathematical background is briefly presented in the main text, but major prerequisites are systematically given in appendices. Material usually not seen in books on vortex dynamics is included, such as geophysical vortex dynamics, aerodynamic vortical flow diagnostics and management.




Separated and Vortical Flow in Aircraft Wing Aerodynamics


Book Description

Fluid mechanical aspects of separated and vortical flow in aircraft wing aerodynamics are treated. The focus is on two wing classes: (1) large aspect-ratio wings and (2) small aspect-ratio delta-type wings. Aerodynamic design issues in general are not dealt with. Discrete numerical simulation methods play a progressively larger role in aircraft design and development. Accordingly, in the introduction to the book the different mathematical models are considered, which underlie the aerodynamic computation methods (panel methods, RANS and scale-resolving methods). Special methods are the Euler methods, which as rather inexpensive methods embrace compressibility effects and also permit to describe lifting-wing flow. The concept of the kinematically active and inactive vorticity content of shear layers gives insight into many flow phenomena, but also, with the second break of symmetry---the first one is due to the Kutta condition---an explanation of lifting-wing flow fields. The prerequisite is an extended definition of separation: “flow-off separation” at sharp trailing edges of class (1) wings and at sharp leading edges of class (2) wings. The vorticity-content concept, with a compatibility condition for flow-off separation at sharp edges, permits to understand the properties of the evolving trailing vortex layer and the resulting pair of trailing vortices of class (1) wings. The concept also shows that Euler methods at sharp delta or strake leading edges of class (2) wings can give reliable results. Three main topics are treated: 1) Basic Principles are considered first: boundary-layer flow, vortex theory, the vorticity content of shear layers, Euler solutions for lifting wings, the Kutta condition in reality and the topology of skin-friction and velocity fields. 2) Unit Problems treat isolated flow phenomena of the two wing classes. Capabilities of panel and Euler methods are investigated. One Unit Problem is the flow past the wing of the NASA Common Research Model. Other Unit Problems concern the lee-side vortex system appearing at the Vortex-Flow Experiment 1 and 2 sharp- and blunt-edged delta configurations, at a delta wing with partly round leading edges, and also at the Blunt Delta Wing at hypersonic speed. 3) Selected Flow Problems of the two wing classes. In short sections practical design problems are discussed. The treatment of flow past fuselages, although desirable, was not possible in the frame of this book.




Elements of Aerodynamics


Book Description

ELEMENTS OF AERODYNAMICS An accessible and hands-on textbook filled with chapter objectives, examples, practice problems, sample tests, and an online aero-calculator In Elements of Aerodynamics, Professor Oscar Biblarz delivers a concise and fundamentals-oriented approach to aerodynamics suitable for both undergraduate and graduate-level students. The text offers numerous problems, examples, and check tests, allowing readers to gain and cement their knowledge through hands-on practice. Using a unique blend of fundamentals, the book provides students with a new approach to high lift airfoils including examples designed to complement the theory. It covers the most vital information on incompressible and compressible flow over two-dimensional and three-dimensional wings. A companion website that includes an interactive aero-calculator and additional student resources makes this a suitable text for online, hybrid, and distance learning. Readers will also find: A concise introduction to units and notation with discussion of the proper usage of dimensionless coefficients in aerodynamics, featuring descriptions of airflow as an incompressible and compressible low-viscosity medium past streamlined wings Comprehensive re-evaluation of the fundamentals of fluid dynamics, including the differential control volume approach and formulation of lift, drag, and pitching moments for thin, attached boundary layers over slender wings at high angles of attack Practical applications of mass, momentum, and energy relations, derived from Euler’s equation, Bernoulli’s equation, and the Kutta-Joukowski theorem Selected treatment of transonic and hypersonic aerodynamic aspects, including supercritical airfoils, the non-linear small perturbation potential equation, Newtonian theory, and hypersonic lift and drag Well-suited for students enrolled in an introductory aerodynamics course as part of an engineering program, Elements of Aerodynamics will also earn a place in the libraries of physics students and those interested in basic fluid mechanics.




Elements Of Fluid Dynamics


Book Description

Elements of Fluid Dynamics is intended to be a basic textbook, useful for undergraduate and graduate students in different fields of engineering, as well as in physics and applied mathematics. The main objective of the book is to provide an introduction to fluid dynamics in a simultaneously rigorous and accessible way, and its approach follows the idea that both the generation mechanisms and the main features of the fluid dynamic loads can be satisfactorily understood only after the equations of fluid motion and all their physical and mathematical implications have been thoroughly assimilated. Therefore, the complete equations of motion of a compressible viscous fluid are first derived and their physical and mathematical aspects are thoroughly discussed. Subsequently, the necessity of simplified treatments is highlighted, and a detailed analysis is made of the assumptions and range of applicability of the incompressible flow model, which is then adopted for most of the rest of the book. Furthermore, the role of the generation and dynamics of vorticity on the development of different flows is emphasized, as well as its influence on the characteristics, magnitude and predictability of the fluid dynamic loads acting on moving bodies.The book is divided into two parts which differ in target and method of utilization. The first part contains the fundamentals of fluid dynamics that are essential for any student new to the subject. This part of the book is organized in a strictly sequential way, i.e. each chapter is assumed to be carefully read and studied before the next one is tackled, and its aim is to lead the reader in understanding the origin of the fluid dynamic forces on different types of bodies. The second part of the book is devoted to selected topics that may be of more specific interest to different students. In particular, some theoretical aspects of incompressible flows are first analysed and classical applications of fluid dynamics such as the aerodynamics of airfoils, wings and bluff bodies are then described. The one-dimensional treatment of compressible flows is finally considered, together with its application to the study of the motion in ducts.




Liutex and Its Applications in Turbulence Research


Book Description

Liutex and Its Applications in Turbulence Research reviews the history of vortex definition, provides an accurate mathematical definition of vortices, and explains their applications in flow transition, turbulent flow, flow control, and turbulent flow experiments. The book explains the term "Rortex" as a mathematically defined rigid rotation of fluids or vortex, which could help solve many longstanding problems in turbulence research. The accurate mathematical definition of the vortex is important in a range of industrial contexts, including aerospace, turbine machinery, combustion, and electronic cooling systems, so there are many areas of research that can benefit from the innovations described here. This book provides a thorough survey of the latest research in generalized and flow-thermal, unified, law-of-the-wall for wall-bounded turbulence. Important theory and methodologies used for developing these laws are described in detail, including: the classification of the conventional turbulent boundary layer concept based on proper velocity scaling; the methodology for identification of the scales of velocity, temperature, and length needed to establish the law; and the discovery, proof, and strict validations of the laws, with both Reynolds and Prandtl number independency properties using DNS data. The establishment of these statistical laws is important to modern fluid mechanics and heat transfer research, and greatly expands our understanding of wall-bounded turbulence. - Provides an accurate mathematical definition of vortices - Provides a thorough survey of the latest research in generalized and flow-thermal, unified, law-of-the-wall for wall-bounded turbulence - Explains the term "Rortex as a mathematically defined rigid rotation of fluids or vortex - Covers the statistical laws important to modern fluid mechanics and heat transfer research, and greatly expands our understanding of wall-bounded turbulence




An Introduction to Magnetohydrodynamics


Book Description

This book is an introductory text on magnetohydrodynamics (MHD) - the study of the interaction of magnetic fields and conducting fluids.