EMC at Component and PCB Level


Book Description

This book provides the knowledge and good design practice for the design or test engineer to take the necessary measures to improve EMC performance and therefore the chance of achieving compliance, early on in the design process. There are many advantages for both the component supplier and consumer, of looking at EMC at component and PCB level. For the suppliers, not only will their products have the competitive edge because they have known EMC performance, but they will be prepared should EMC compliance become mandatory in the future. For consumers it is a distinct advantage to know how a component will behave within a system with regard to EMC.Shows how to achieve EMC compliance early on in the design processProvides the knowledge to trace system EMC performance problemsFollows best design practices




EMC and the Printed Circuit Board


Book Description

This accessible, new reference work shows how and why RF energy iscreated within a printed circuit board and the manner in whichpropagation occurs. With lucid explanations, this book enablesengineers to grasp both the fundamentals of EMC theory and signalintegrity and the mitigation process needed to prevent an EMCevent. Author Montrose also shows the relationship between time andfrequency domains to help you meet mandatory compliancerequirements placed on printed circuit boards. Using real-world examples the book features: Clear discussions, without complex mathematical analysis, offlux minimization concepts Extensive analysis of capacitor usage for variousapplications Detailed examination of components characteristics with variousgrounding methodologies, including implementation techniques An in-depth study of transmission line theory A careful look at signal integrity, crosstalk, andtermination




Printed Circuit Board Design Techniques for EMC Compliance


Book Description

"Electromagnetic compatibility (EMC) is an engineering discipline often identified as "black magic." This belief exists because the fundamental mechanisms on how radio frequency (RF) energy is developed within a printed circuit board (PCB) is not well understood by practicing engineers. Rigorous mathematical analysis is not required to design a PCB. Using basic EMC theory and converting complex concepts into simple analogies helps engineers understand the mitigation process that deters EMC events from occurring. This user-friendly reference covers a broad spectrum of information never before published, and is as fluid and comprehensive as the first edition. The simplified approach to PCB design and layout is based on real-life experience, training, and knowledge. Printed Circuit Board Techniques for EMC Compliance, Second Edition will help prevent the emission or reception of unwanted RF energy generated by components and interconnects, thus achieving acceptable levels of EMC for electrical equipment. It prepares one for complying with stringent domestic and international regulatory requirements. Also, it teaches how to solve complex problems with a minimal amount of theory and math. Essential topics discussed include: * Introduction to EMC * Interconnects and I/O * PCB basics * Electrostatic discharge protection * Bypassing and decoupling * Backplanes-Ribbon Cables-Daughter Cards * Clock Circuits-Trace Routing-Terminations * Miscellaneous design techniques This rules-driven book-formatted for quick access and cross-reference-is ideal for electrical and EMC engineers, consultants, technicians, and PCB designers regardless of experience or educational background." Sponsored by: IEEE Electromagnetic Compatibility Society




The Circuit Designer's Companion


Book Description

Tim Williams' Circuit Designer's Companion provides a unique masterclass in practical electronic design that draws on his considerable experience as a consultant and design engineer. As well as introducing key areas of design with insider's knowledge, Tim focuses on the art of designing circuits so that every production model will perform its specified function – and no other unwanted function - reliably over its lifetime. The combination of design alchemy and awareness of commercial and manufacturing factors makes this an essential companion for the professional electronics designer. Topics covered include analog and digital circuits, component types, power supplies and printed circuit board design. The second edition includes new material on microcontrollers, surface mount processes, power semiconductors and interfaces, bringing this classic work up to date for a new generation of designers.· A unique masterclass in the design of optimized, reliable electronic circuits· Beyond the lab - a guide to electronic design for production, where cost-effective design is imperative · Tips and know-how provide a whole education for the novice, with something to offer the most seasoned professional




The Circuit Designer's Companion


Book Description

The Circuit Designer's Companion covers the theoretical aspects and practices in analogue and digital circuit design. Electronic circuit design involves designing a circuit that will fulfill its specified function and designing the same circuit so that every production model of it will fulfill its specified function, and no other undesired and unspecified function. This book is composed of nine chapters and starts with a review of the concept of grounding, wiring, and printed circuits. The subsequent chapters deal with the passive and active components of circuitry design. These topics are followed by discussions of the principles of other design components, including linear integrated circuits, digital circuits, and power supplies. The remaining chapters consider the vital role of electromagnetic compatibility in circuit design. These chapters also look into safety, design of production, testability, reliability, and thermal management of the designed circuit. This book is of great value to electrical and design engineers.




EMC for Systems and Installations


Book Description

This is a guide for the system designers and installers faced with the day-to-day issues of achieving EMC, and will be found valuable across a wide range of roles and sectors, including process control, manufacturing, medical, IT and building management. The EMC issues covered will also make this book essential reading for product manufacturers and suppliers - and highly relevant for managers as well as technical staff. The authors' approach is thoroughly practical - all areas of installation EMC are covered, with particular emphasis on cabling and earthing. Students on MSc and CPD programmes will also find in this book some valuable real-world antidotes to the academic treatises. The book is presented in two parts: the first is non-technical, and looks at the need for EMC in the context of systems and installations, with a chapter on the management aspects of EMC. The second part covers the technical aspects of EMC, looking at the various established methods which can be applied to ensure compatibility, and setting these in the context of the new responsibilities facing system builders. EMC for Systems and Installations is designed to complement Tim Williams' highly successful EMC for Product Designers. - Practical guide to EMC design issues for those involved in systems design and installation - Complementary title to Williams' bestselling EMC for Product Designers - Unique guidance for installers on EMC topics




PCB Design for Real-World EMI Control


Book Description

Proper design of printed circuit boards can make the difference between a product passing emissions requirements during the first cycle or not. Traditional EMC design practices have been simply rule-based, that is, a list of rules-of-thumb are presented to the board designers to implement. When a particular rule-of-thumb is difficult to implement, it is often ignored. After the product is built, it will often fail emission requirements and various time consuming and costly add-ons are then required. Proper EMC design does not require advanced degrees from universities, nor does it require strenuous mathematics. It does require a basic understanding of the underlying principles of the potential causes of EMC emissions. With this basic understanding, circuit board designers can make trade-off decisions during the design phase to ensure optimum EMC design. Consideration of these potential sources will allow the design to pass the emissions requirements the first time in the test laboratory. A number of other books have been published on EMC. Most are general books on EMC and do not focus on printed circuit board is intended to help EMC engineers and design design. This book engineers understand the potential sources of emissions and how to reduce, control, or eliminate these sources. This book is intended to be a 'hands-on' book, that is, designers should be able to apply the concepts in this book directly to their designs in the real-world.




EMC of Analog Integrated Circuits


Book Description

Environmental electromagnetic pollution has drastically increased over the last decades. The omnipresence of communication systems, various electronic appliances and the use of ever increasing frequencies, all contribute to a noisy electromagnetic environment which acts detrimentally on sensitive electronic equipment. Integrated circuits must be able to operate satisfactorily while cohabiting harmoniously in the same appliance, and not generate intolerable levels of electromagnetic emission, while maintaining a sound immunity to potential electromagnetic disturbances: analog integrated circuits are in particular more easily disturbed than their digital counterparts, since they don't have the benefit of dealing with predefined levels ensuring an innate immunity to disturbances. The objective of the research domain presented in EMC of Analog Integrated Circuits is to improve the electromagnetic immunity of considered analog integrated circuits, so that they start to fail at relevantly higher conduction levels than before.




Testing for EMC Compliance


Book Description

The Keep It Simple (KISS) philosophy is the primary focus of this book. It is written in very simple language with minimal math, as a compilation of helpful EMI troubleshooting hints. Its light-hearted tone is at odds with the extreme seriousness of most engineering reference works that become boring after a few pages. This text tells engineers what to do and how to do it. Only a basic knowledge of math, electronics, and a basic understanding of EMI/EMC are necessary to understand the concepts and circuits described. Once EMC troubleshooting is demystified, readers learn there are quick and simple techniques to solve complicated problems a key aspect of this book. Simple and inexpensive methods to resolve EMI issues are discussed to help generate unique ideas and methods for developing additional diagnostic tools and measurement procedures. An appendix on how to build probes is included. It can be a fun activity, even humorous at times with bizarre techniques (i.e., the sticky finger probe).




Noise Reduction Techniques in Electronic Systems


Book Description

This updated and expanded version of the very successful first edition offers new chapters on controlling the emission from electronic systems, especially digital systems, and on low-cost techniques for providing electromagnetic compatibility (EMC) for consumer products sold in a competitive market. There is also a new chapter on the susceptibility of electronic systems to electrostatic discharge. There is more material on FCC regulations, digital circuit noise and layout, and digital circuit radiation. Virtually all the material in the first edition has been retained. Contains a new appendix on FCC EMC test procedures.