Energy and Mass in Relativity Theory


Book Description

This is the first book in which Einstein's equation is explicitly compared with its popular though not correct counterpart E = mc2, according to which mass increases with velocity. The book will be of interest to researchers in theoretical, atomic and nuclear physics, to historians of science as well as to students and teachers interested in relativity theory.




Einstein's Mass-Energy Equation


Book Description

In volume one of Einstein's Mass-Energy Equation, we examine the history and philosophical significance of several demonstrations Einstein published for his mass-energy relation, which is often expressed by the iconic equation E = mc2. Our goal is to illustrate how these demonstrations display a clear shift away from a reliance on electromagnetic phenomena culminating in Einstein's 1934 purely ÒdynamicÓ demonstration. Philosophically, this trend signals the importance of recognizing special relativity as what Einstein called a Òprinciple theory.Ó Volume two of this work examines the role that Einstein's mass-energy relation played in the development of quantum mechanics and general relativity. We also discuss the first empirical confirmation of E = mc2 and some contemporary debates concerning the philosophical interpretation of this important result.




University Physics


Book Description

University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.




Energy and Mass in Relativity Theory


Book Description

Energy and Mass in Relativity Theory presents about 30 pedagogical papers published by the author over the last 20 years. They deal with concepts central to relativity theory: energy E, rest energy E0, momentum p, mass m, velocity v of particles of matter, including massless photons for which v = c. Other related subjects are also discussed. According to Einstein's equation E0 = mc2, a massive particle at rest contains rest energy which is partly liberated in the nuclear reactions in the stars and the Sun, as well as in nuclear reactors and bombs on the Earth. The mass entering Einstein's equation does not depend on velocity of a body. This concept of mass is used in the physics of elementary particles and is gradually prevailing in the modern physics textbooks. This is the first book in which Einstein's equation is explicitly compared with its popular though not correct counterpart E = mc2, according to which mass increases with velocity. The book will be of interest to researchers in theoretical, atomic and nuclear physics, to historians of science as well as to students and teachers interested in relativity theory.




Mass and Motion in General Relativity


Book Description

From the infinitesimal scale of particle physics to the cosmic scale of the universe, research is concerned with the nature of mass. While there have been spectacular advances in physics during the past century, mass still remains a mysterious entity at the forefront of current research. Our current perspective on gravitation has arisen over millennia, through the contemplation of falling apples, lift thought experiments and notions of stars spiraling into black holes. In this volume, the world’s leading scientists offer a multifaceted approach to mass by giving a concise and introductory presentation based on insights from their respective fields of research on gravity. The main theme is mass and its motion within general relativity and other theories of gravity, particularly for compact bodies. Within this framework, all articles are tied together coherently, covering post-Newtonian and related methods as well as the self-force approach to the analysis of motion in curved space-time, closing with an overview of the historical development and a snapshot on the actual state of the art. All contributions reflect the fundamental role of mass in physics, from issues related to Newton’s laws, to the effect of self-force and radiation reaction within theories of gravitation, to the role of the Higgs boson in modern physics. High-precision measurements are described in detail, modified theories of gravity reproducing experimental data are investigated as alternatives to dark matter, and the fundamental problem of reconciling any theory of gravity with the physics of quantum fields is addressed. Auxiliary chapters set the framework for theoretical contributions within the broader context of experimental physics. The book is based upon the lectures of the CNRS School on Mass held in Orléans, France, in June 2008. All contributions have been anonymously refereed and, with the cooperation of the authors, revised by the editors to ensure overall consistency.




Einstein's 1912 Manuscript on the Special Theory of Relativity


Book Description

This tribute to Einstein's genius opens with a brief essay by Hanoch Gutfreund, a chronology of Einstein's life, a selection of quotes by Einstein, and, to introduce the manuscript, a detailed description of the manuscript, its contents, publication history, and provenance.




Concepts of Mass in Classical and Modern Physics


Book Description

Rigorous, concise, and provocative monograph analyzes the ancient concept of mass, the neoplatonic concept of inertia, the modern concept of mass, mass and energy, and much more. 1964 edition.







The Meaning of Relativity


Book Description

In 1921, five years after the appearance of his comprehensive paper on general relativity and twelve years before he left Europe permanently to join the Institute for Advanced Study, Albert Einstein visited Princeton University, where he delivered the Stafford Little Lectures for that year. These four lectures constituted an overview of his then-controversial theory of relativity. Princeton University Press made the lectures available under the title The Meaning of Relativity, the first book by Einstein to be produced by an American publisher. As subsequent editions were brought out by the Press, Einstein included new material amplifying the theory. A revised version of the appendix "Relativistic Theory of the Non-Symmetric Field," added to the posthumous edition of 1956, was Einstein's last scientific paper.




Astrophysics


Book Description

Astrophysics is said to have been born when Isaac Newton saw an apple drop in his orchard and had the electrifying insight that the Moon falls just like that apple. James Binney shows how the application of physical laws derived on Earth allows us to understand objects that exist on the far side of the Universe.