Managing Energy Use in Modern Buildings


Book Description

This timely volume brings together case studies that address the urgent need to manage energy use and improve thermal comfort in modern buildings while preserving their historic significance and character. This collection of ten case studies addresses the issues surrounding the improvement of energy consumption and thermal comfort in modern buildings built between 1928 and 1969 and offers valuable lessons for other structures facing similar issues. These buildings, international in scope and diverse in type, style, and size, range from the Shulman House, a small residence in Los Angeles, to the TD Bank Tower, a skyscraper complex in Toronto, and from the Calouste Gulbenkian Foundation, a cultural venue in Lisbon, to the Van Nelle Factory in Rotterdam, now an office building. Showing ingenuity and sensitivity, the case studies consider improvements to such systems as heating, cooling, lighting, ventilation, and controls. They provide examples that demonstrate best practices in conservation and show ways to reduce carbon footprints, minimize impacts to historic materials and features, and introduce renewable energy sources, in compliance with energy codes and green-building rating systems. The Conserving Modern Heritage series, launched in 2019, is written by architects, engineers, conservators, scholars, and allied professionals. The books in this series provide well-vetted case studies that address the challenges of conserving twentieth-century heritage.




Energy


Book Description

Expanding on the first edition, ‘Energy: Production, Conversion, Storage, Conservation, and Coupling (2nd Ed.)’ provides readers with a practical understanding of the major aspects of energy. It includes extended chapters with revised data and additional practice problems as well as a new chapter examining sustainability and sustainable energy technologies. Like the first edition, it also explores topics such as energy production, conservation of energy, energy storage and energy coupling. Written for students across a range of engineering and science disciplines, it provides a comprehensive study guide. It is particularly suitable for courses in energy technology, sustainable energy technologies and energy conversion & management, and offers an ideal reference text for students, engineers, energy researchers and industry professionals. * Presents a clear introduction to the basic properties, forms and sources of energy * Includes a range of supporting figures, tables and thermodynamic diagrams * Provides course instructors with a solution manual for practice problems




Renewable Energy and Wildlife Conservation


Book Description

Brings together disparate conversations about wildlife conservation and renewable energy, suggesting ways these two critical fields can work hand in hand. Renewable energy is often termed simply "green energy," but its effects on wildlife and other forms of biodiversity can be quite complex. While capturing renewable resources like wind, solar, and energy from biomass can require more land than fossil fuel production, potentially displacing wildlife habitat, renewable energy infrastructure can also create habitat and promote species health when thoughtfully implemented. The authors of Renewable Energy and Wildlife Conservation argue that in order to achieve a balanced plan for addressing these two crucially important sustainability issues, our actions at the nexus of these fields must be directed by current scientific information related to the ecological effects of renewable energy production. Synthesizing an extensive, rapidly growing base of research and insights from practitioners into a single, comprehensive resource, contributors to this volume • describe processes to generate renewable energy, focusing on the Big Four renewables—wind, bioenergy, solar energy, and hydroelectric power • review the documented effects of renewable energy production on wildlife and wildlife habitats • consider current and future policy directives, suggesting ways industrial-scale renewables production can be developed to minimize harm to wildlife populations • explain recent advances in renewable power technologies • identify urgent research needs at the intersection of renewables and wildlife conservation Relevant to policy makers and industry professionals—many of whom believe renewables are the best path forward as the world seeks to meet its expanding energy needs—and wildlife conservationists—many of whom are alarmed at the rate of renewables-related habitat conversion—this detailed book culminates with a chapter underscoring emerging opportunities in renewable energy ecology. Contributors: Edward B. Arnett, Brian B. Boroski, Regan Dohm, David Drake, Sarah R. Fritts, Rachel Greene, Steven M. Grodsky, Amanda M. Hale, Cris D. Hein, Rebecca R. Hernandez, Jessica A. Homyack, Henriette I. Jager, Nicole M. Korfanta, James A. Martin, Christopher E. Moorman, Clint Otto, Christine A. Ribic, Susan P. Rupp, Jake Verschuyl, Lindsay M. Wickman, T. Bently Wigley, Victoria H. Zero




Energy: Management, Supply and Conservation


Book Description

With more and more concern being expressed over the Earth's dwindling energy resources as well as rising pollution levels, the subject of energy management and conservation is becoming increasingly important. Over half of all energy consumed is used in buildings so effective management of buildings whether commercial or domestic is vital. This book is a comprehensive text dealing with the theory and practice of the supply of energy to consumers, energy management and auditing and energy saving technology. It will be a core text on courses on energy management and building services, as well as updating professionals in the building sector.




Energy Conservation for IoT Devices


Book Description

This book addresses the Internet of Things (IoT), an essential topic in the technology industry, policy, and engineering circles, and one that has become headline news in both the specialty press and the popular media. The book focuses on energy efficiency concerns in IoT and the requirements related to Industry 4.0. It is the first-ever “how-to” guide on frequently overlooked practical, methodological, and moral questions in any nations’ journey to reducing energy consumption in IoT devices. The book discusses several examples of energy-efficient IoT, ranging from simple devices like indoor temperature sensors, to more complex sensors (e.g. electrical power measuring devices), actuators (e.g. HVAC room controllers, motors) and devices (e.g. industrial circuit-breakers, PLC for home, building or industrial automation). It provides a detailed approach to conserving energy in IoT devices, and comparative case studies on performance evaluation metrics, state-of-the-art approaches, and IoT legislation.




Teaching and Learning of Energy in K – 12 Education


Book Description

This volume presents current thoughts, research, and findings that were presented at a summit focusing on energy as a cross-cutting concept in education, involving scientists, science education researchers and science educators from across the world. The chapters cover four key questions: what should students know about energy, what can we learn from research on teaching and learning about energy, what are the challenges we are currently facing in teaching students this knowledge, and what needs be done to meet these challenges in the future? Energy is one of the most important ideas in all of science and it is useful for predicting and explaining phenomena within every scientific discipline. The challenge for teachers is to respond to recent policies requiring them to teach not only about energy as a disciplinary idea but also about energy as an analytical framework that cuts across disciplines. Teaching energy as a crosscutting concept can equip a new generation of scientists and engineers to think about the latest cross-disciplinary problems, and it requires a new approach to the idea of energy. This book examines the latest challenges of K-12 teaching about energy, including how a comprehensive understanding of energy can be developed. The authors present innovative strategies for learning and teaching about energy, revealing overlapping and diverging views from scientists and science educators. The reader will discover investigations into the learning progression of energy, how understanding of energy can be examined, and proposals for future directions for work in this arena. Science teachers and educators, science education researchers and scientists themselves will all find the discussions and research presented in this book engaging and informative.




Energy-Efficient Technologies for the Dismounted Soldier


Book Description

This book documents electric power requirements for the dismounted soldier on future Army battlefields, describes advanced energy concepts, and provides an integrated assessment of technologies likely to affect limitations and needs in the future. It surveys technologies associated with both supply and demand including: energy sources and systems; low power electronics and design; communications, computers, displays, and sensors; and networks, protocols, and operations. Advanced concepts discussed are predicated on continued development by the Army of soldier systems similar to the Land Warrior system on which the committee bases its projections on energy use. Finally, the volume proposes twenty research objectives to achieve energy goals in the 2025 time frame.




Retrofitting for Energy Conservation


Book Description

Convert residences and light-commercial buildings from energy-wasters to energy-efficiency. New remodelling codes require improvements in energy efficiency. Home and building owners want to reduce their energy costs. And now with Retrofitting for Energy Conservation, construction and design professionals can discover the most up-to-date plans, methods, tools, and materials for improving energy conservation in existing structures. Almost 85% of energy-conserving projects are retrofits, according to the National Association of Homebuilders. Retrofitting for Energy Conservation gives you the tools you need to meet this demand with step-by-step help in retrofitting any residence or light commercial building for energy savings. From assessing the challenge and offering the client options through initial project design and final execution of the building plan, this book gives you solutions that meet and exceed code requirements.




America's Energy Future


Book Description

For multi-user PDF licensing, please contact customer service. Energy touches our lives in countless ways and its costs are felt when we fill up at the gas pump, pay our home heating bills, and keep businesses both large and small running. There are long-term costs as well: to the environment, as natural resources are depleted and pollution contributes to global climate change, and to national security and independence, as many of the world's current energy sources are increasingly concentrated in geopolitically unstable regions. The country's challenge is to develop an energy portfolio that addresses these concerns while still providing sufficient, affordable energy reserves for the nation. The United States has enormous resources to put behind solutions to this energy challenge; the dilemma is to identify which solutions are the right ones. Before deciding which energy technologies to develop, and on what timeline, we need to understand them better. America's Energy Future analyzes the potential of a wide range of technologies for generation, distribution, and conservation of energy. This book considers technologies to increase energy efficiency, coal-fired power generation, nuclear power, renewable energy, oil and natural gas, and alternative transportation fuels. It offers a detailed assessment of the associated impacts and projected costs of implementing each technology and categorizes them into three time frames for implementation.




International Handbook of Research on Conceptual Change


Book Description

Conceptual change research investigates the processes through which learners substantially revise prior knowledge and acquire new concepts. Tracing its heritage to paradigms and paradigm shifts made famous by Thomas Kuhn, conceptual change research focuses on understanding and explaining learning of the most the most difficult and counter-intuitive concepts. Now in its second edition, the International Handbook of Research on Conceptual Change provides a comprehensive review of the conceptual change movement and of the impressive research it has spawned on students’ difficulties in learning. In thirty-one new and updated chapters, organized thematically and introduced by Stella Vosniadou, this volume brings together detailed discussions of key theoretical and methodological issues, the roots of conceptual change research, and mechanisms of conceptual change and learner characteristics. Combined with chapters that describe conceptual change research in the fields of physics, astronomy, biology, medicine and health, and history, this handbook presents writings on interdisciplinary topics written for researchers and students across fields.