Bio-Engineering Approaches to Cancer Diagnosis and Treatment


Book Description

Bioengineering Approaches to Cancer Diagnosis and Treatment is written for an audience of senior undergraduate students and graduate students in mechanical, electrical and biomedical engineering fields and other professionals in medicine. It is ideally structured for teaching and for those who are working in cancer bioengineering or interdisciplinary projects. The book's authors bring a unique perspective from their expertise in immunology, nanobiomaterials and heat transfer. Topical coverage includes an introduction to the fundamentals of bioengineering and engineering approaches for cancer diagnosis, cancer treatment via case studies, and sections on imaging, immunotherapy, cell therapy, drug delivery, ultrasound and microfluidics in cancer treatment. - Provides fully supported case studies relating to cancer diagnosis and therapy - Pairs the basic fundamentals of engineering and biomedical engineering and applies them to the diagnosis of cancer




Engineering and Physical Approaches to Cancer


Book Description

Engineering and Physical Approaches to Cancer addresses the newest research at this interface between cancer biology and the physical sciences. Several chapters address the mechanobiology of collective and individual cell migration, including experimental, theoretical, and computational perspectives. Other chapters consider the crosstalk of biological, chemical, and physical cues in the tumor microenvironment, including the role of senescence, polyploid giant cells, TGF-beta, metabolism, and immune cells. Further, chapters focus on circulating tumor cells and metastatic colonization, highlighting both bioengineered models as well as diagnostic technologies. Further, this book features the work of emerging and diverse investigators in this field, who have already made impressive cross-disciplinary scientific contributions. This book is designed for a general audience, particularly researchers conversant in cancer biology but less familiar with engineering (and vice-versa). Thus, we envision that this book will be suitable for faculty, postdoctoral fellows, and advanced graduate students across medicine, biological sciences, and engineering. We also anticipate this book will be of interest to medical professionals and trainees, as well as researchers in the pharmaceutical and biomedical device industry. Describes physical aspects of cancer, including collective cell migration, the aberrant tumor microenvironment, circulating tumor cells, and metastatic colonization. First volume available on the topic of physical aspects of cancer




Recent Advances in Cancer Diagnostics and Therapy


Book Description

This book provides information about different types and stages of cancer and their subtypes with their respective molecular mechanisms, etiology, histopathology, and cellular origins. This book also provides detailed information about cancer incidence, mortality, and different types of technologies both bio and nano employed in cancer diagnosis and screening, and their applications in cancer therapies. This book informs readers about molecular mechanisms of cancer, diagnosis, and therapies along with different computational techniques used on a single platform. The chapters include a broad and integrated perspective on cancer-related topics. This book covers both conventional and emerging techniques employed in cancer screening and diagnosis, including imaging, biomarker, and electrochemical nanosensor-based approaches with detailed information on sensor development. Similarly, this book also covers the mechanisms of different conventional and emerging herbal and nano therapies used in cancer treatment. The authors discuss applications of different computational and mathematical tools, such as machine-learning methods, that can be employed in cancer diagnosis and therapy at the level of personalized medicine. Features: Offers an integrated approach to provide information about all aspects of cancer biology, diagnosis, and therapy Focuses on both conventional and emerging tools/techniques applicable in cancer screening and diagnosis Covers the mechanisms of conventional and emerging anticancer drugs and therapies Provides insights about a personalized medicine-based approach in cancer diagnosis and therapy This book is essential for university students, course lecturers, researchers, and industrialists working in the fields of cancer biology, medicine, and pharmacology.




Physics of Cancer


Book Description

This revised second edition is improved linguistically with multiple increases of the number of figures and the inclusion of several novel chapters such as actin filaments during matrix invasion, microtubuli during migration and matrix invasion, nuclear deformability during migration and matrix invasion, and the active role of the tumor stroma in regulating cell invasion.




Bioengineering Innovative Solutions for Cancer


Book Description

Bioengineering Innovative Solutions for Cancer bridges the gap between bioengineering and cancer biology. It focuses on a 'bottom up' understanding of the links between molecules, cells, tissues, organs, organisms, and health and functions-all within a bioengineering context. Chapters cover the main methods, technologies and devices that could help diagnose cancer sooner (e.g., ultrasensitive imaging and sensing technologies) and helpful treatments (e.g., new, more targeted therapies). The book takes an interdisciplinary approach that is ideal for those who need the latest information on design techniques and devices that help treat cancer using new, more targeted therapies. By covering the many different ways engineers can deliver innovative solutions to tackle cancer, this book is a valuable read for researchers who have an ambition to make an impact on people's life in either an academic or industrial setting.




Building a Better Delivery System


Book Description

In a joint effort between the National Academy of Engineering and the Institute of Medicine, this books attempts to bridge the knowledge/awareness divide separating health care professionals from their potential partners in systems engineering and related disciplines. The goal of this partnership is to transform the U.S. health care sector from an underperforming conglomerate of independent entities (individual practitioners, small group practices, clinics, hospitals, pharmacies, community health centers et. al.) into a high performance "system" in which every participating unit recognizes its dependence and influence on every other unit. By providing both a framework and action plan for a systems approach to health care delivery based on a partnership between engineers and health care professionals, Building a Better Delivery System describes opportunities and challenges to harness the power of systems-engineering tools, information technologies and complementary knowledge in social sciences, cognitive sciences and business/management to advance the U.S. health care system.




The Molecular Basis of Cancer


Book Description

Successfully fighting cancer starts with understanding how it begins. This thoroughly revised 3rd Edition explores the scientific basis for our current understanding of malignant transformation and the pathogenesis and treatment of cancer. A team of leading experts thoroughly explain the molecular biologic principles that underlie the diagnostic tests and therapeutic interventions now being used in clinical trials and practice. Incorporating cutting-edge advances and the newest research, the book provides thorough descriptions of everything from molecular abnormalities in common cancers to new approaches for cancer therapy. Features sweeping updates throughout, including molecular targets for the development of anti-cancer drugs, gene therapy, and vaccines...keeping you on the cutting edge of your specialty. Offers a new, more user-friendly full-color format so the information that you need is easier to find. Presents abundant figures-all redrawn in full color-illustrating major concepts for easier comprehension. Features numerous descriptions of the latest clinical strategies-helping you to understand and take advantage of today’s state-of-the-art biotechnology advances.




Computational Systems Biology Approaches in Cancer Research


Book Description

Praise for Computational Systems BiologyApproaches in Cancer Research: "Complex concepts are written clearly and with informative illustrations and useful links. The book is enjoyable to read yet provides sufficient depth to serve as a valuable resource for both students and faculty." — Trey Ideker, Professor of Medicine, UC Xan Diego, School of Medicine "This volume is attractive because it addresses important and timely topics for research and teaching on computational methods in cancer research. It covers a broad variety of approaches, exposes recent innovations in computational methods, and provides acces to source code and to dedicated interactive web sites." — Yves Moreau, Department of Electrical Engineering, SysBioSys Centre for Computational Systems Biology, University of Leuven With the availability of massive amounts of data in biology, the need for advanced computational tools and techniques is becoming increasingly important and key in understanding biology in disease and healthy states. This book focuses on computational systems biology approaches, with a particular lens on tackling one of the most challenging diseases - cancer. The book provides an important reference and teaching material in the field of computational biology in general and cancer systems biology in particular. The book presents a list of modern approaches in systems biology with application to cancer research and beyond. It is structured in a didactic form such that the idea of each approach can easily be grasped from the short text and self-explanatory figures. The coverage of topics is diverse: from pathway resources, through methods for data analysis and single data analysis to drug response predictors, classifiers and image analysis using machine learning and artificial intelligence approaches. Features Up to date using a wide range of approaches Applicationexample in each chapter Online resources with useful applications’




Cancer Immunology and Immunotherapy


Book Description

Delivery Technologies for Immuno-Oncology: Volume 1: Delivery Strategies and Engineering Technologies in Cancer Immunotherapy examines the challenges of delivering immuno-oncology therapies. Immuno-oncology (IO) is a growing field of medicine at the interface of immunology and cancer biology leading to development of novel therapeutic approaches, such as chimeric antigen receptor T-cell (CAR-T) and immune checkpoint blockade antibodies, that are clinically approved approaches for cancer therapy. Although currently approved IO approaches have shown tremendous promise for select types of cancers, broad application of IO strategies could even further improve the clinical success, especially for diseases such as pancreatic cancer, brain tumors where the success of IO so far has been limited. Nanotechnology-based targeted delivery strategies could improve the delivery efficiency of IO agents as well as provide additional avenues for novel therapeutic and vaccination strategies. Additionally, a number of locally-administered immunogenic scaffolds and therapeutic strategies, such as the use of STING agonist, could benefit from rationally designed biomaterials and delivery approaches. Delivery Technologies for Immuno-Oncology: Volume 1: Delivery Strategies and Engineering Technologies in Cancer Immunotherapy creates a comprehensive treaty that engages the scientific and medical community who are involved in the challenges of immunology, cancer biology, and therapeutics with possible solutions from the nanotechnology and drug delivery side. Comprehensive treaty covering all aspects of immuno-oncology (IO) Novel strategies for delivery of IO therapeutics and vaccines Forecasting on the future of nanotechnology and drug delivery for IO




Physics Of Cancer, The: Research Advances


Book Description

Cancer deaths per capita have decreased in recent years, but the improvement is attributed to prevention, not treatment. The difficulty in treating cancer may be due to its 'complexity', in the mathematical physics sense of the word. Tumors evolve and spread in response to internal and external factors that involve feedback mechanisms and nonlinear behavior. Investigations of the nonlinear interactions among cells, and between cells and their environment, are crucial for developing a sufficiently detailed understanding of the system's emergent phenomenology to be able to control the behavior. In the case of cancer, controlling the system's behavior will mean the ability to treat and cure the disease. Physicists have been studying various complex, nonlinear systems for many years using a variety of techniques. These investigations have provided insights that allow physicists to make unique contributions towards the treatment of cancer.This interdisciplinary book presents recent advancements in physicists' research on cancer. The work presented in this volume uses a variety of physical, biochemical, mathematical, theoretical, and computational techniques to gain a deeper molecular and cellular understanding of the horrific disease that is cancer.