Ennio de Giorgi Colloquium


Book Description




Game-Theoretic Foundations for Probability and Finance


Book Description

Game-theoretic probability and finance come of age Glenn Shafer and Vladimir Vovk’s Probability and Finance, published in 2001, showed that perfect-information games can be used to define mathematical probability. Based on fifteen years of further research, Game-Theoretic Foundations for Probability and Finance presents a mature view of the foundational role game theory can play. Its account of probability theory opens the way to new methods of prediction and testing and makes many statistical methods more transparent and widely usable. Its contributions to finance theory include purely game-theoretic accounts of Ito’s stochastic calculus, the capital asset pricing model, the equity premium, and portfolio theory. Game-Theoretic Foundations for Probability and Finance is a book of research. It is also a teaching resource. Each chapter is supplemented with carefully designed exercises and notes relating the new theory to its historical context. Praise from early readers “Ever since Kolmogorov's Grundbegriffe, the standard mathematical treatment of probability theory has been measure-theoretic. In this ground-breaking work, Shafer and Vovk give a game-theoretic foundation instead. While being just as rigorous, the game-theoretic approach allows for vast and useful generalizations of classical measure-theoretic results, while also giving rise to new, radical ideas for prediction, statistics and mathematical finance without stochastic assumptions. The authors set out their theory in great detail, resulting in what is definitely one of the most important books on the foundations of probability to have appeared in the last few decades.” – Peter Grünwald, CWI and University of Leiden “Shafer and Vovk have thoroughly re-written their 2001 book on the game-theoretic foundations for probability and for finance. They have included an account of the tremendous growth that has occurred since, in the game-theoretic and pathwise approaches to stochastic analysis and in their applications to continuous-time finance. This new book will undoubtedly spur a better understanding of the foundations of these very important fields, and we should all be grateful to its authors.” – Ioannis Karatzas, Columbia University




Making Mathematics Come to Life


Book Description

``It is difficult to define the genre of the book. It is not a problem book, nor a textbook, nor a `book for reading about mathematics'. It is most of all reminiscent of a good lecture course, from which a thoughtful student comes away with more than was actually spoken about in the lectures.'' --from the Preface by A. S. Merkurjev If you are acquainted with mathematics at least to the extent of a standard high school curriculum and like it enough to want to learn more, and if, in addition, you are prepared to do some serious work, then you should start studying this book. An understanding of the material of the book requires neither a developed ability to reason abstractly nor skill in using the refined techniques of mathematical analysis. In each chapter elementary problems are considered, accompanied by theoretical material directly related to them. There are over 300 problems in the book, most of which are intended to be solved by the reader. In those places in the book where it is natural to introduce concepts outside the high school syllabus, the corresponding definitions are given with examples. And in order to bring out the meaning of such concepts clearly, appropriate (but not too many) theorems are proved concerning them. Unfortunately, what is sometimes studied at school under the name ``mathematics'' resembles real mathematics not any closer than a plucked flower gathering dust in a herbarium or pressed between the pages of a book resembles that same flower in the meadow besprinkled with dewdrops sparkling in the light of the rising sun.




MATHKNOW


Book Description

Mathematics forms bridges between knowledge, tradition, and contemporary life. The continuous development and growth of its many branches, both classical and modern, permeates and fertilizes all aspects of applied science and technology, and so has a vital impact on our modern society. The book will focus on these aspects and will benefit from the contribution of several world-famous scientists from mathematics and related sciences, such as: Ralph Abraham, Andrew Crumey, Peter Markowich, Claudio Procesi, Clive Ruggles, Ismail Serageldin, Amin Shokrollahi, Tobias Wallisser.







A Beautiful Mind


Book Description

The bestselling, prize-winning biography of a mathematical genius who suffered from schizophrenia, miraculously recovered, and then won a Nobel Prize.




Invitation to Discrete Mathematics


Book Description

A clear and self-contained introduction to discrete mathematics for undergraduates and early graduates.




Moment Maps, Cobordisms, and Hamiltonian Group Actions


Book Description

During the last 20 years, ``localization'' has been one of the dominant themes in the area of equivariant differential geometry. Typical results are the Duistermaat-Heckman theory, the Berline-Vergne-Atiyah-Bott localization theorem in equivariant de Rham theory, and the ``quantization commutes with reduction'' theorem and its various corollaries. To formulate the idea that these theorems are all consequences of a single result involving equivariant cobordisms, the authors have developed a cobordism theory that allows the objects to be non-compact manifolds. A key ingredient in this non-compact cobordism is an equivariant-geometrical object which they call an ``abstract moment map''. This is a natural and important generalization of the notion of a moment map occurring in the theory of Hamiltonian dynamics. The book contains a number of appendices that include introductions to proper group-actions on manifolds, equivariant cohomology, Spin${^\mathrm{c}}$-structures, and stable complex structures. It is geared toward graduate students and research mathematicians interested in differential geometry. It is also suitable for topologists, Lie theorists, combinatorists, and theoretical physicists. Prerequisite is some expertise in calculus on manifolds and basic graduate-level differential geometry.




Cohomological and Geometric Approaches to Rationality Problems


Book Description

Rationality problems link algebra to geometry, and the difficulties involved depend on the transcendence degree of $K$ over $k$, or geometrically, on the dimension of the variety. A major success in 19th century algebraic geometry was a complete solution of the rationality problem in dimensions one and two over algebraically closed ground fields of characteristic zero. Such advances has led to many interdisciplinary applications to algebraic geometry. This comprehensive book consists of surveys of research papers by leading specialists in the field and gives indications for future research in rationality problems. Topics discussed include the rationality of quotient spaces, cohomological invariants of quasi-simple Lie type groups, rationality of the moduli space of curves, and rational points on algebraic varieties. This volume is intended for researchers, mathematicians, and graduate students interested in algebraic geometry, and specifically in rationality problems. Contributors: F. Bogomolov; T. Petrov; Y. Tschinkel; Ch. Böhning; G. Catanese; I. Cheltsov; J. Park; N. Hoffmann; S. J. Hu; M. C. Kang; L. Katzarkov; Y. Prokhorov; A. Pukhlikov




Recent Books