Introduction to Enzyme and Coenzyme Chemistry


Book Description

Enzymes are giant macromolecules which catalyse biochemical reactions. They are remarkable in many ways. Their three-dimensional structures are highly complex, yet they are formed by spontaneous folding of a linear polypeptide chain. Their catalytic properties are far more impressive than synthetic catalysts which operate under more extreme conditions. Each enzyme catalyses a single chemical reaction on a particular chemical substrate with very high enantioselectivity and enantiospecificity at rates which approach “catalytic perfection”. Living cells are capable of carrying out a huge repertoire of enzyme-catalysed chemical reactions, some of which have little or no precedent in organic chemistry. The popular textbook Introduction to Enzyme and Coenzyme Chemistry has been thoroughly updated to include information on the most recent advances in our understanding of enzyme action, with additional recent examples from the literature used to illustrate key points. A major new feature is the inclusion of two-colour figures, and the addition of over 40 new figures of the active sites of enzymes discussed in the text, in order to illustrate the interplay between enzyme structure and function. This new edition provides a concise but comprehensive account from the perspective of organic chemistry, what enzymes are, how they work, and how they catalyse many of the major classes of enzymatic reactions, and will continue to prove invaluable to both undergraduate and postgraduate students of organic, bio-organic and medicinal chemistry, chemical biology, biochemistry and biotechnology.




Organic Chemistry of Enzyme-Catalyzed Reactions, Revised Edition


Book Description

The Organic Chemistry of Enzyme-Catalyzed Reactions is not a book on enzymes, but rather a book on the general mechanisms involved in chemical reactions involving enzymes. An enzyme is a protein molecule in a plant or animal that causes specific reactions without itself being permanently altered or destroyed. This is a revised edition of a very successful book, which appeals to both academic and industrial markets. - Illustrates the organic mechanism associated with each enzyme-catalyzed reaction - Makes the connection between organic reaction mechanisms and enzyme mechanisms - Compiles the latest information about molecular mechanisms of enzyme reactions - Accompanied by clearly drawn structures, schemes, and figures - Includes an extensive bibliography on enzyme mechanisms covering the last 30 years - Explains how enzymes can accelerate the rates of chemical reactions with high specificity - Provides approaches to the design of inhibitors of enzyme-catalyzed reactions - Categorizes the cofactors that are appropriate for catalyzing different classes of reactions - Shows how chemical enzyme models are used for mechanistic studies - Describes catalytic antibody design and mechanism - Includes problem sets and solutions for each chapter - Written in an informal and didactic style




Enzyme Chemistry


Book Description

As the first edition of this book was going through the publication process, a revolution was taking place in the technologies available for the study of enzymes. The techniques of molecular biology, especially in genetic engineering of organisms and in site specific mutagenesis of genes, were established and were being brought into use to solve many problems in in enzymology. Added to these fundamental and applied science, not least advances the possibility of generating catalysts from antibodies has become a topic of major interest. These major innovations have changed the emphasis of much bioorganic research; whereas in the past, the protein was often the 'sleeping partner' ina study, its detailed function is now the major focus of scientific interest. Similarly in industry, the potential of genetically manipulated organisms to satisfy the needs for the production of chemicals and foodstuffs has been widely recognised. The second edition of 'Enzyme Chemistry, Impact and Applications' takes on board these new develop ments whilst maintaining the overall aims and views of the first edition. Many of the chapters have been completely rewritten to take account of advances in the last five years especially with regard to the impact of biologically based technologies. Although the book continues to approach its subject matter from the point of view of the chemist, the increased interdisciplinary content of much modern science will be obvious from the discussion.







Enzymes


Book Description

In recent years, there have been considerable developments in techniques for the investigation and utilisation of enzymes. With the assistance of a co-author, this popular student textbook has been updated to include techniques such as membrane chromatography, aqueous phase partitioning, engineering recombinant proteins for purification and due to the rapid advances in bioinformatics/proteomics, a discussion of the analysis of complex protein mixtures by 2D-electrophoresis and RPHPLC prior to sequencing by mass spectroscopy. Written with the student firmly in mind, no previous knowledge of biochemistry, and little of chemistry, is assumed. It is intended to provide an introduction to enzymology, and a balanced account of all the various theoretical and applied aspects of the subject which are likely to be included in a course. - Provides an introduction to enzymology and a balanced account of the theoretical and applied aspects of the subject - Discusses techniques such as membrane chromatography, aqueous phase partitioning and engineering recombinant proteins for purification - Includes a discussion of the analysis of complex protein mixtures by 2D-electrophoresis and RPHPLC prior to sequencing by mass spectroscopy




Enzymes


Book Description

Fully updated and expanded-a solid foundation for understandingexperimental enzymology. This practical, up-to-date survey is designed for a broadspectrum of biological and chemical scientists who are beginning todelve into modern enzymology. Enzymes, Second Editionexplains the structural complexities of proteins and enzymes andthe mechanisms by which enzymes perform their catalytic functions.The book provides illustrative examples from the contemporaryliterature to guide the reader through concepts and data analysisprocedures. Clear, well-written descriptions simplify the complexmathematical treatment of enzyme kinetic data, and numerouscitations at the end of each chapter enable the reader to accessthe primary literature and more in-depth treatments of specifictopics. This Second Edition of Enzymes: A Practical Introductionto Structure, Mechanism, and Data Analysis features refinedand expanded coverage of many concepts, while retaining theintroductory nature of the book. Important new featuresinclude: A new chapter on protein-ligand binding equilibria Expanded coverage of chemical mechanisms in enzyme catalysisand experimental measurements of enzyme activity Updated and refined discussions of enzyme inhibitors andmultiple substrate reactions Coverage of current practical applications to the study ofenzymology Supplemented with appendices providing contact information forsuppliers of reagents and equipment for enzyme studies, as well asa survey of useful Internet sites and computer software forenzymatic data analysis, Enzymes, Second Edition isthe ultimate practical guide for scientists and students inbiochemical, pharmaceutical, biotechnical, medicinal, andagricultural/food-related research.




Enzyme-Based Organic Synthesis


Book Description

Enzyme-Based Organic Synthesis An insightful exploration of an increasingly popular technique in organic chemistry In Enzyme-Based Organic Synthesis, expert chemist Dr. Cheanyeh Cheng delivers a comprehensive discussion of the principles, methods, and applications of enzymatic and microbial processes for organic synthesis. The book thoroughly explores this growing area of green synthetic organic chemistry, both in the context of academic research and industrial practice. The distinguished author provides a single point of access for enzymatic methods applicable to organic synthesis and focuses on enzyme catalyzed organic synthesis with six different classes of enzyme. This book serves as a link between enzymology and biocatalysis and serves as an invaluable reference for the growing number of organic chemists using biocatalysis. Enzyme-Based Organic Synthesis provides readers with multiple examples of practical applications of the main enzyme classes relevant to the pharmaceutical, medical, food, cosmetics, fragrance, and health care industries. Readers will also find: A thorough introduction to foundational topics, including the discovery and nature of enzymes, enzyme structure, catalytic function, molecular recognition, enzyme specificity, and enzyme classes Practical discussions of organic synthesis with oxidoreductases, including oxidation reactions and reduction reactions Comprehensive explorations of organic synthesis with transferases, including transamination with aminotransferases and phosphorylation with kinases In-depth examinations of organic synthesis with hydrolases, including the hydrolysis of the ester bond Perfect for organic synthetic chemists, chemical and biochemical engineers, biotechnologists, process chemists, and enzymologists, Enzyme-Based Organic Synthesis is also an indispensable resource for practitioners in the pharmaceutical, food, cosmetics, and fragrance industries that regularly apply this type of synthesis.




Nanozymes: Next Wave of Artificial Enzymes


Book Description

This book describes the fundamental concepts, the latest developments and the outlook of the field of nanozymes (i.e., the catalytic nanomaterials with enzymatic characteristics). As one of today’s most exciting fields, nanozyme research lies at the interface of chemistry, biology, materials science and nanotechnology. Each of the book’s six chapters explores advances in nanozymes. Following an introduction to the rise of nanozymes research in the course of research on natural enzymes and artificial enzymes in Chapter 1, Chapters 2 through 5 discuss different nanomaterials used to mimic various natural enzymes, from carbon-based and metal-based nanomaterials to metal oxide-based nanomaterials and other nanomaterials. In each of these chapters, the nanomaterials’ enzyme mimetic activities, catalytic mechanisms and key applications are covered. In closing, Chapter 6 addresses the current challenges and outlines further directions for nanozymes. Presenting extensive information on nanozymes and supplemented with a wealth of color illustrations and tables, the book offers an ideal guide for readers from disparate areas, including analytical chemistry, materials science, nanoscience and nanotechnology, biomedical and clinical engineering, environmental science and engineering, green chemistry, and novel catalysis.




Enzyme Chemistry


Book Description

In the molecular sciences, enzyme chemistry occupies a special niche as one of the major contact points between chemical and biological disciplines. The special properties of enzymes as selective and efficient catalysts are so central to current challenges to chemists that the development of enzyme chemistry in the past thirty years has been a major stimulus to chemical research in general. On the one hand studies of the intrinsic properties of enzymes and, on the other hand, their applications to synthesis, drug design, and biosynthesis have had an immense impact. This book brings together in one volume essays describing several such fields with emphasis on the applications. It would be unnecessarily repetitious to outline the approach and contents of the book in a Preface; the first short chapter is more eloquent than a formal Preface can be. I shall therefore encourage you to begin with the Introduction in Chapter 1 and here I wish to extend my warm thanks to those who have contributed to the production of this book: the authors for their acceptance of the overall concept of the book and for the thoughtfulness of their writing; Dr Charles Suckling, FRS and Professor Hamish Wood for their constructive criticism of the whole book; and Dr John Buckingham and his colleagues at Chapman and Hall for their efficiency and enthusiasm in transforming the typescripts into the book that you now hold. Colin J. Suckling University of Strathclyde Contributors Donald H.




Comprehensive Natural Products III


Book Description

Comprehensive Natural Products III, Third Edition, Seven Volume Set updates and complements the previous two editions, including recent advances in cofactor chemistry, structural diversity of natural products and secondary metabolites, enzymes and enzyme mechanisms and new bioinformatics tools. Natural products research is a dynamic discipline at the intersection of chemistry and biology concerned with isolation, identification, structure elucidation, and chemical characteristics of naturally occurring compounds such as pheromones, carbohydrates, nucleic acids and enzymes. This book reviews the accumulated efforts of chemical and biological research to understand living organisms and their distinctive effects on health and medicine and to stimulate new ideas among the established natural products community. Provides readers with an in-depth review of current natural products research and a critical insight into the future direction of the field Bridges the gap in knowledge by covering developments in the field since the second edition published in 2010 Split into 7 sections on key topics to allow students, researchers and professionals to find relevant information quickly and easily Ensures that the knowledge within is easily understood by and applicable to a large audience