Enzyme Handbook 10


Book Description

Recent progress on enzyme immobilisation, enzyme production, coenzyme re generation and enzyme engineering has opened up fascinating new fields for the potential application of enzymes in a large range of different areas. As more progress in research and application of enzymes has been made the lack of an up-to-date overview of enzyme molecular properties has become more appar ent. Therefore, we started the development of an enzyme data information sys tem as part of protein-design activities at GBF. The present book "Enzyme Hand book" represents the printed version of this data bank. In future a computer searchable version will be also available. The enzymes in this Handbook are arranged according to the Enzyme Com mission list of enzymes. Some 3000 "different" enzymes will be covered. Fre quently enzymes with very different properties are included under the same EC number. Although we intend to give a representative overview on the char acteristics and variability of each enzyme the Handbook is not a compendium. The reader will have to go to the primary literature for more detailed information. Naturally it is not possible to cover all the numerous literature references for each enzyme (for special enzymes up to 40000) if the data representation is to be concise as is intended.




Enzyme Handbook


Book Description

I t is a pleasure to write a few lines to welcome this labour of Iove. I t is always dangeraus to draw sharp divisions between the interests of different scientists. However, in the present stage of progress in enzymology, there are those who are primarily interested in the molecular mechanisms of the reactions of a few selected enzymes, while others are involved in the grand scheme of the chemical metabolism of cells or whole organisms. Fortunately Dr. Barman has had experience in both the molecular and the metabolic aspects of enzymology. He therefore knows the require ments of research workers interested in enzymes from many different points of view. It would be foolish to hope that a handbook of this kind will provide all the information about enzymes which different specialists would wish to find. The author has attempted to help users in the following way. If one Iooks up a particular enzyme one will find all the basic data and a very good Iist of references for more specialized information. Apart from selection of the type of information provided, the author's judgement on the reliability of data is, of course, of critical importance in a handbook. If contradicting published information about some property of an enzyme has to be sorted out, it is often neither possible to teil the whole story nor to give an objective judgement.




Enzyme Handbook 16


Book Description

The objective of the Enzyme Handbook is to provide in concise form data on enzymes sufficiently well characterized. The data sheets are arranged in their EC number sequence, volumes 15 to 17 contain Additional Enzymes and updated data sheets to be inserted in previous volumes by their EC-number. For each enzyme, systematic and common names are given, information on reaction type, substrate and product spectrum, inhibitors, cofactors, kinetic data, pH and temperature range, origin, purification, molecular data and storage conditions are listed. A reference list completes the data sheets. This collection is an indispensable source of information for researchers applying enzymes in analysis, synthe.




Source Book of Enzymes


Book Description

Enzymes, which work as organic catalysts for chemical reactions, are of interest to a wide range of scientific disciplines. The Source Book of Enzymes provides a worldwide listing of commercially available enzymes, offering the widest possible selection of enzyme products for specific applications. The Source Book of Enzymes answers these important questions and many more: Where can I find a particular enzyme? What enzymes are available for purchase? How do I select the appropriate enzyme for my application? How do the available enzymes differ from one another? What are the reaction conditions for optimum enzyme performance? Who sells the enzyme I need? The reliable research tool you will turn to again and again With the Source Book of Enzymes you will save hours of research time once wasted on searching through catalogs and product data bulletins. This practical reference tool makes the selection process easy by providing systematic and comparative functional information about each enzyme. Its global scope ensures that you will find the enzyme and supplier most suited to your needs and geographical location. Students and educators; researchers in academia, industry and government; bioengineers and biotechnologists, and purchasing agents will find this an invaluable resource for conducting competitive assessments, identifying new product trends and opportunities, identifying enzyme properties, and ordering specific enzymes.




Enzyme Handbook


Book Description

This collection of datasheets was generated from the database "BRENDA"




Enzyme Handbook 13


Book Description

Today, as the large international genome sequence projects are gaining a great amount of public attention and huge sequence data bases are created it be comes more and more obvious that we are very limited in our ability to access functional data for the gene products - the proteins, in particular for enzymes. Those data are inherently very difficult to collect, interpret and standardize as they are highly distributed among journals from different fields and are often sub ject to experimental conditions. Nevertheless a systematic collection is essential for our interpretation of the genome information and more so for possible appli cations of that knowledge in the fields of medicine, agriculture, etc .. Recent pro gress on enzyme immobilization, enzyme production, enzyme inhibition, coen zyme regeneration and enzyme engineering has opened up fascinating new fields for the potential application of enzymes in a large range of different areas. It is the functional profile of an enzyme that enables a biologist of physician to analyze a metabolic pathway and its disturbance; it is the substrate specificity of an enzyme which tells an analytical biochemist how to design an assay; it is the stability, specificity and efficiency of an enzyme which determines its usefulness in the biotechnical transformation of a molecule. And the sum of all these data will have to be considered when the designer of artificial biocatalysts has to choose the optimum prototype to start with.




Class 3.2 Hydrolases VII


Book Description

The Springer Handbook of Enzymes provides concise data on some 5,000 enzymes sufficiently well characterized – and here is the second, updated edition. Their application in analytical, synthetic and biotechnology processes as well as in food industry, and for medicinal treatments is added. Data sheets are arranged in their EC-Number sequence. The new edition reflects considerable progress in enzymology: the total material has more than doubled, and the complete 2nd edition consists of 39 volumes plus Synonym Index. Starting in 2009, all newly classified enzymes are treated in Supplement Volumes.




Handbook of Enzyme Inhibitors


Book Description

Second revised and enlarged edition. In two parts. The rapid increase in data has made it necessary to bring an updated version of the highly successful first edition. The contents of the book have trebled; it now lists more than 8000 different inhibitors for about 2000 enzymes. Over 15000 enzyme-inhibitor interactions are tabulated. Equipped with this impressive amount of information, biochemists and other scientists working with enzymes will be able to plan and interpret experiments effectively. The organization of the first edition, which was welcomed enthusiastically by experts worldwide, has been retained. The user can search either for an inhibitor of a particular enzyme or for all enzymes which are inhibited by a particular compound.




Enzyme Handbook 14


Book Description

Today, as the large international genome sequence projects are gaining a great amount of public attention and huge sequence data bases are created it be comes more and more obvious that we are very limited in our ability to access functional data for the gene products -the proteins, in particular for enzymes. Those data are inherently very difficult to collect, interpret and standardize as they are highly distributed among journals from different fields and are often sub ject to experimental conditions. Nevertheless a systematic collection is essential for our interpretation of the genome information and more so for possible appli cations of that knowledge in the fields of medicine, agriculture, etc .. Recent pro gress on enzyme immobilization, enzyme production, enzyme inhibition, coen zyme regeneration and enzyme engineering has opened up fascinating new fields for the potential application of enzymes in a large range of different areas. It is the functional profile of an enzyme that enables a biologist of physician to analyze a metabolic pathway and its disturbance; it is the substrate specificity of an enzyme which tells an analytical biochemist how to design an assay; it is the stability, specificity and efficiency of an enzyme which determines its usefulness in the biotechnical transformation of a molecule. And the sum of all these data will have to be considered when the designer of artificial biocatalysts has to choose the optimum prototype to start with.




Enzyme Handbook 11


Book Description

EC 2.1 - EC 2.3.1 for EC 2.3.2 see Vol. 12




Recent Books