Enzymes Finger Printing


Book Description




Enzyme Assays


Book Description

Edited by one of the leading experts in the field, this book fills the need for a book presenting the most important methods for high-throughput screenings and functional characterization of enzymes. It adopts an interdisciplinary approach, making it indispensable for all those involved in this expanding field, and reflects the major advances made over the past few years. For biochemists, analytical, organic and catalytic chemists, and biotechnologists.




DNA Technology in Forensic Science


Book Description

Matching DNA samples from crime scenes and suspects is rapidly becoming a key source of evidence for use in our justice system. DNA Technology in Forensic Science offers recommendations for resolving crucial questions that are emerging as DNA typing becomes more widespread. The volume addresses key issues: Quality and reliability in DNA typing, including the introduction of new technologies, problems of standardization, and approaches to certification. DNA typing in the courtroom, including issues of population genetics, levels of understanding among judges and juries, and admissibility. Societal issues, such as privacy of DNA data, storage of samples and data, and the rights of defendants to quality testing technology. Combining this original volume with the new update-The Evaluation of Forensic DNA Evidence-provides the complete, up-to-date picture of this highly important and visible topic. This volume offers important guidance to anyone working with this emerging law enforcement tool: policymakers, specialists in criminal law, forensic scientists, geneticists, researchers, faculty, and students.




DNA Fingerprinting


Book Description

DNA fingerprinting is a revolutionary technique that enables law enforcement agencies, diagnostic laboratories and research scientists to identify minute pieces of tissue, to determine parentage and other biological family relationships. This is a study of its applications.




Restriction Enzymes


Book Description

Restriction enzymes cleave DNA at specific recognition sites and have many uses in molecular biology, genetics, and biotechnology. More than 4000 restriction enzymes are known today, of which more than 621 are commercially available, justifying their description by Nobel Prize winner Richard Roberts as "the workhorses of molecular biology." This book by Wil Loenen is the first full-length history of these invaluable tools, from their recognition in the 1950s to the flowering of their development in the 1970s and 1980s to their ubiquitous availability today. Loenen has worked with restriction enzymes throughout her career as a research scientist, during which she came to know many of the leaders in this field personally and professionally. She is the author of several authoritative and widely appreciated reviews of the enzymes' biology. Her book was written with the close assistance of several of the field's pioneers, including Rich Roberts, Stuart Linn, Tom Bickle, Steve Halford, and the late Joe Bertani. The seed for the book was sown at a retirement party for Noreen Murray, to whom the book is dedicated, and its roots lie in a remarkable 2013 conference at Cold Spring Harbor Laboratory that celebrated the people and events that were vital to the field's development. Funding for the book was made possible by the Genentech Center for the History of Molecular Biology and Biotechnology at Cold Spring Harbor Laboratory.




DNA Fingerprinting in Plants


Book Description

Given the explosive development of new molecular marker techniques over the last decade, newcomers and experts alike in the field of DNA fingerprinting will find an easy-to-follow guide to the multitude of techniques available in DNA Fingerprinting in Plants: Principles, Methods, and Applications, Second Edition. Along with step-by-step annotated p




The Evaluation of Forensic DNA Evidence


Book Description

In 1992 the National Research Council issued DNA Technology in Forensic Science, a book that documented the state of the art in this emerging field. Recently, this volume was brought to worldwide attention in the murder trial of celebrity O. J. Simpson. The Evaluation of Forensic DNA Evidence reports on developments in population genetics and statistics since the original volume was published. The committee comments on statements in the original book that proved controversial or that have been misapplied in the courts. This volume offers recommendations for handling DNA samples, performing calculations, and other aspects of using DNA as a forensic toolâ€"modifying some recommendations presented in the 1992 volume. The update addresses two major areas: Determination of DNA profiles. The committee considers how laboratory errors (particularly false matches) can arise, how errors might be reduced, and how to take into account the fact that the error rate can never be reduced to zero. Interpretation of a finding that the DNA profile of a suspect or victim matches the evidence DNA. The committee addresses controversies in population genetics, exploring the problems that arise from the mixture of groups and subgroups in the American population and how this substructure can be accounted for in calculating frequencies. This volume examines statistical issues in interpreting frequencies as probabilities, including adjustments when a suspect is found through a database search. The committee includes a detailed discussion of what its recommendations would mean in the courtroom, with numerous case citations. By resolving several remaining issues in the evaluation of this increasingly important area of forensic evidence, this technical update will be important to forensic scientists and population geneticistsâ€"and helpful to attorneys, judges, and others who need to understand DNA and the law. Anyone working in laboratories and in the courts or anyone studying this issue should own this book.







DNA Fingerprinting


Book Description

DNA fingerprinting is a revolutionary technique that enables scientists to match minute tissue samples and facilitates scientific studies on the composition, reproduction, and evolution of animal and plant populations. As a tool for positive identification of criminals, it plays a particularly important role in forensic science. The first book to be published in the field, , DNA Fingerprinting is a practical guide to basic principles and laboratory methods as applied to a variety of fields including forensic analysis, paternity testing, medical diagnostics, animal and plant sciences, and wildlife poaching.




Epigenetics of Aging


Book Description

Recent studies have indicated that epigenetic processes may play a major role in both cellular and organismal aging. These epigenetic processes include not only DNA methylation and histone modifications, but also extend to many other epigenetic mediators such as the polycomb group proteins, chromosomal position effects, and noncoding RNA. The topics of this book range from fundamental changes in DNA methylation in aging to the most recent research on intervention into epigenetic modifications to modulate the aging process. The major topics of epigenetics and aging covered in this book are: 1) DNA methylation and histone modifications in aging; 2) Other epigenetic processes and aging; 3) Impact of epigenetics on aging; 4) Epigenetics of age-related diseases; 5) Epigenetic interventions and aging: and 6) Future directions in epigenetic aging research. The most studied of epigenetic processes, DNA methylation, has been associated with cellular aging and aging of organisms for many years. It is now apparent that both global and gene-specific alterations occur not only in DNA methylation during aging, but also in several histone alterations. Many epigenetic alterations can have an impact on aging processes such as stem cell aging, control of telomerase, modifications of telomeres, and epigenetic drift can impact the aging process as evident in the recent studies of aging monozygotic twins. Numerous age-related diseases are affected by epigenetic mechanisms. For example, recent studies have shown that DNA methylation is altered in Alzheimer’s disease and autoimmunity. Other prevalent diseases that have been associated with age-related epigenetic changes include cancer and diabetes. Paternal age and epigenetic changes appear to have an effect on schizophrenia and epigenetic silencing has been associated with several of the progeroid syndromes of premature aging. Moreover, the impact of dietary or drug intervention into epigenetic processes as they affect normal aging or age-related diseases is becoming increasingly feasible.