Epigenetic Regulation of Skin Development and Regeneration


Book Description

This indispensable volume highlights recent studies identifying epigenetic mechanisms as essential regulators of skin development, stem cell activity and regeneration. Chapters are contributed by leading experts and promote the skin as an accessible model system for studying mechanisms that control organ development and regeneration. The timely discussions contained throughout are of broad relevance to other areas of biology and medicine and can help inform the development of novel therapeutics for skin disorders as well as new approaches to skin regeneration that target the epigenome. Part of the highly successful Stem Cells and Regenerative Medicine series, Epigenetic Regulation of Skin Development and Regeneration uncovers the fundamental significance of epigenetic mechanisms in skin development and regeneration, and emphasizes the development of new therapies for a number of skin disorders, such as pathological conditions of epidermal differentiation, pigmentation and carcinogenesis. At least six categories of researchers will find this book essential, including stem cell, developmental, hair follicle or molecular biologists, and gerontologists or clinical dermatologists.




Epigenetics and Regeneration


Book Description

Epigenetics and Regeneration compiles the first foundational reference on epigenetic mechanisms governing tissue development, repair, homeostasis, and regeneration, as well as pathways to employ these mechanisms in clinical practice and translational science. In this book, life science researchers, clinicians, and students will discover an interdisciplinary resource bringing together common themes in the field, background overviews, research methods, recent advances, and opportunities for drug discovery. Throughout this volume, special attention is paid to pre-clinical and first clinical studies aimed at increasing the regenerative potential of damaged tissues by epigenetic drugs, as well as innovative, discipline spanning strategies to enhance cell reprogramming. As an all-inclusive, evidence-based volume, Epigenetics and Regeneration will stimulate discussion and boost new research in this fascinating and impactful area of translational epigenetics. Provides a foundational overview of epigenetics in regenerative medicine Examines epigenetic components of tissue regeneration for a variety of organ systems and tissue types, as well as current attempts to employ these mechanisms in clinical practice Offers researchers, students, clinicians, and pharmacologists the tools they need to enhance tissue development, repair, homeostasis, and regeneration and explore new epigenetic therapeutic pathways Features chapter contributions from leading international researchers and clinicians in the fields of epigenetics and regenerative medicine













Epigenetics: Development and Disease


Book Description

Epigenetics fine-tunes the life processes dictated by DNA sequences, but also kick-starts pathophysiological processes including diabetes, AIDS and cancer. This volume tracks the latest research on epigenetics, including work on new-generation therapeutics.




Epigenetics Explained


Book Description

You Are About To Develop A Comprehensive Understanding Of The Concept Of Epigenetics, Its Place In Modern Day Medicine, And Health Optimization And Why It Is Literally Changing How We Approach The Treatment Of Various Health Problems! Modern research has now confirmed that the behavior of your genes doesn't always depend on their DNA sequence, but also on factors referred to epigenetics, and that changes in these factors can play a critical role in disease, life structures, behavior and all aspects of life. And that's not all; research also shows that therapies based on these factors have proven effective in reversing some conditions, boosting the immune system, optimizing psychology and human adaptation. Epigenetics have thus taken the center stage in understanding human biology at a deeper level, life, and evolution. But what are epigenetics, and how to they work? How does the environment affect them, and how is this "remembered" in the body? How does epigenetic therapy work? What does it treat? Isn't it risky? What is the relationship between epigenetics and the human psychology? How can we benefit from the discovery and understanding of epigenetics? If you have these and other related questions, this 2 in 1 book is for you so keep reading. Here is a bit of what you'll learn from this 2 in 1 book: What epigenetics are, why they're important and how they work How epigenetics relate with our experiences How cells divide, and how genes control the growth and division of cells The difference between the DNA, gene and chromosomes The existing evidence of epigenetic changes, including in transgenerational epigenetic inheritance The ins and outs of epigenetics mechanisms The types of epigenetic therapies available today, including their risks, benefits and research on them The effect of epigenetic control in transcriptional regulation in pluripotency and early differentiation, DNA methylation and Demethylation, nucleosome remodeling and chromatin looping How epigenetics work at the molecular level and the effect of DNA damage in epigenetic change The functions of epigenetics, and how they boost mindfulness training, healthy eating and exercise How epigenetic therapy and modifications affects diabetic retinopathy, emotional disorders, cardiac dysfunction, cancer and schizophrenia, mesothelioma and many more How epigenetic modifications are used in understanding plant and animal evolution How epigenetic mechanisms are used in understanding human adaptation, boosting memory formation, growth and reinforcing infant neurobehavior. The role of epigenetic mechanisms in maternal care The role of environmental chemicals in epigenetics How epigenetics are involved in neurodegenerative diseases, drug formation, human development, the development of Hox genes and many more. The role of environmental exposures in pathophysiology of IPF Modulation of epigenetic marks by environmental exposures How epigenetic regulation affects the immune system ...And so much more! Whether you are a beginner or an intermediate in epigenetics, you will find this book educative, as you learn the A-Z of factors that are quickly changing our understanding of the structure of life. Don't wait.... Scroll up and click Buy Now with 1-Click or Buy Now to get started!




Epigenetics of Aging


Book Description

Recent studies have indicated that epigenetic processes may play a major role in both cellular and organismal aging. These epigenetic processes include not only DNA methylation and histone modifications, but also extend to many other epigenetic mediators such as the polycomb group proteins, chromosomal position effects, and noncoding RNA. The topics of this book range from fundamental changes in DNA methylation in aging to the most recent research on intervention into epigenetic modifications to modulate the aging process. The major topics of epigenetics and aging covered in this book are: 1) DNA methylation and histone modifications in aging; 2) Other epigenetic processes and aging; 3) Impact of epigenetics on aging; 4) Epigenetics of age-related diseases; 5) Epigenetic interventions and aging: and 6) Future directions in epigenetic aging research. The most studied of epigenetic processes, DNA methylation, has been associated with cellular aging and aging of organisms for many years. It is now apparent that both global and gene-specific alterations occur not only in DNA methylation during aging, but also in several histone alterations. Many epigenetic alterations can have an impact on aging processes such as stem cell aging, control of telomerase, modifications of telomeres, and epigenetic drift can impact the aging process as evident in the recent studies of aging monozygotic twins. Numerous age-related diseases are affected by epigenetic mechanisms. For example, recent studies have shown that DNA methylation is altered in Alzheimer’s disease and autoimmunity. Other prevalent diseases that have been associated with age-related epigenetic changes include cancer and diabetes. Paternal age and epigenetic changes appear to have an effect on schizophrenia and epigenetic silencing has been associated with several of the progeroid syndromes of premature aging. Moreover, the impact of dietary or drug intervention into epigenetic processes as they affect normal aging or age-related diseases is becoming increasingly feasible.




Epigenetic Mechanisms of Gene Regulation


Book Description

Many inheritable changes in gene function are not explained by changes in the DNA sequence. Such epigenetic mechanisms are known to influence gene function in most complex organisms and include effects such as transposon function, chromosome imprinting, yeast mating type switching and telomeric silencing. In recent years, epigenetic effects have become a major focus of research activity. This monograph, edited by three well-known biologists from different specialties, is the first to review and synthesize what is known about these effects across all species, particularly from a molecular perspective, and will be of interest to everyone in the fields of molecular biology and genetics.