Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems


Book Description

Rare event probability (10-4 and less) estimation has become a large area of research in the reliability engineering and system safety domains. A significant number of methods have been proposed to reduce the computation burden for the estimation of rare events from advanced sampling approaches to extreme value theory. However, it is often difficult in practice to determine which algorithm is the most adapted to a given problem.Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems: A Practical Approach provides a broad up-to-date view of the current available techniques to estimate rare event probabilities described with a unified notation, a mathematical pseudocode to ease their potential implementation and finally a large spectrum of simulation results on academic and realistic use cases. Provides a broad overview of the practical approach of rare event methods. Includes algorithms that are applied to aerospace benchmark test cases Offers insight into practical tuning issues




Selected Papers on Analysis, Probability, and Statistics


Book Description

This book presents papers in the general area of mathematical analysis as it pertains to probability and statistics, dynamical systems, differential equations, and analytic function theory. Among the topics discussed are: stochastic differential equations, spectra of the Laplacian and Schrödinger operators, nonlinear partial differential equations which generate dissipative dynamical systems, fractal analysis on self-similar sets, and the global structure of analytic functions.




Introduction to Probability


Book Description

Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.




Information-Theoretic Methods for Estimating of Complicated Probability Distributions


Book Description

Mixing up various disciplines frequently produces something that are profound and far-reaching. Cybernetics is such an often-quoted example. Mix of information theory, statistics and computing technology proves to be very useful, which leads to the recent development of information-theory based methods for estimating complicated probability distributions. Estimating probability distribution of a random variable is the fundamental task for quite some fields besides statistics, such as reliability, probabilistic risk analysis (PSA), machine learning, pattern recognization, image processing, neural networks and quality control. Simple distribution forms such as Gaussian, exponential or Weibull distributions are often employed to represent the distributions of the random variables under consideration, as we are taught in universities. In engineering, physical and social science applications, however, the distributions of many random variables or random vectors are so complicated that they do not fit the simple distribution forms at al. Exact estimation of the probability distribution of a random variable is very important. Take stock market prediction for example. Gaussian distribution is often used to model the fluctuations of stock prices. If such fluctuations are not normally distributed, and we use the normal distribution to represent them, how could we expect our prediction of stock market is correct? Another case well exemplifying the necessity of exact estimation of probability distributions is reliability engineering. Failure of exact estimation of the probability distributions under consideration may lead to disastrous designs. There have been constant efforts to find appropriate methods to determine complicated distributions based on random samples, but this topic has never been systematically discussed in detail in a book or monograph. The present book is intended to fill the gap and documents the latest research in this subject. Determining a complicated distribution is not simply a multiple of the workload we use to determine a simple distribution, but it turns out to be a much harder task. Two important mathematical tools, function approximation and information theory, that are beyond traditional mathematical statistics, are often used. Several methods constructed based on the two mathematical tools for distribution estimation are detailed in this book. These methods have been applied by the author for several years to many cases. They are superior in the following senses: (1) No prior information of the distribution form to be determined is necessary. It can be determined automatically from the sample; (2) The sample size may be large or small; (3) They are particularly suitable for computers. It is the rapid development of computing technology that makes it possible for fast estimation of complicated distributions. The methods provided herein well demonstrate the significant cross influences between information theory and statistics, and showcase the fallacies of traditional statistics that, however, can be overcome by information theory. Key Features: - Density functions automatically determined from samples - Free of assuming density forms - Computation-effective methods suitable for PC- density functions automatically determined from samples- Free of assuming density forms- Computation-effective methods suitable for PC




Monitoring Vertebrate Populations


Book Description

This book is written to serve as a general reference for biologists and resource managers with relatively little statistical training. It focuses on both basic concepts and practical applications to provide professionals with the tools needed to assess monitoring methods that can detect trends in populations. It combines classical finite population sampling designs with population enumeration procedures in a unified approach for obtaining abundance estimates for species of interest. The statistical information is presented in practical, easy-to-understand terminology. - Presented in practical, easy-to-understand terminology - Serves as a general reference for biologists and resource managers - Provides the tools needed to detect trends in populations - Introduces a unified approach for obtaining abundance estimates




A Mathematician Plays The Stock Market


Book Description

Can a renowned mathematician successfully outwit the stock market? Not when his biggest investment is WorldCom. In A Mathematician Plays the Stock Market , best-selling author John Allen Paulos employs his trademark stories, vignettes, paradoxes, and puzzles to address every thinking reader's curiosity about the market -- Is it efficient? Is it random? Is there anything to technical analysis, fundamental analysis, and other supposedly time-tested methods of picking stocks? How can one quantify risk? What are the most common scams? Are there any approaches to investing that truly outperform the major indexes? But Paulos's tour through the irrational exuberance of market mathematics doesn't end there. An unrequited (and financially disastrous) love affair with WorldCom leads Paulos to question some cherished ideas of personal finance. He explains why "data mining" is a self-fulfilling belief, why "momentum investing" is nothing more than herd behavior with a lot of mathematical jargon added, why the ever-popular Elliot Wave Theory cannot be correct, and why you should take Warren Buffet's "fundamental analysis" with a grain of salt. Like Burton Malkiel's A Random Walk Down Wall Street , this clever and illuminating book is for anyone, investor or not, who follows the markets -- or knows someone who does.




Survey Sampling Theory and Applications


Book Description

Survey Sampling Theory and Applications offers a comprehensive overview of survey sampling, including the basics of sampling theory and practice, as well as research-based topics and examples of emerging trends. The text is useful for basic and advanced survey sampling courses. Many other books available for graduate students do not contain material on recent developments in the area of survey sampling. The book covers a wide spectrum of topics on the subject, including repetitive sampling over two occasions with varying probabilities, ranked set sampling, Fays method for balanced repeated replications, mirror-match bootstrap, and controlled sampling procedures. Many topics discussed here are not available in other text books. In each section, theories are illustrated with numerical examples. At the end of each chapter theoretical as well as numerical exercises are given which can help graduate students. - Covers a wide spectrum of topics on survey sampling and statistics - Serves as an ideal text for graduate students and researchers in survey sampling theory and applications - Contains material on recent developments in survey sampling not covered in other books - Illustrates theories using numerical examples and exercises




Parameter Estimation and Inverse Problems


Book Description

Parameter Estimation and Inverse Problems, Third Edition, is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who do not have an extensive mathematical background. The book is complemented by a companion website that includes MATLAB codes that correspond to examples that are illustrated with simple, easy to follow problems that illuminate the details of particular numerical methods. Updates to the new edition include more discussions of Laplacian smoothing, an expansion of basis function exercises, the addition of stochastic descent, an improved presentation of Fourier methods and exercises, and more. - Features examples that are illustrated with simple, easy to follow problems that illuminate the details of a particular numerical method - Includes an online instructor's guide that helps professors teach and customize exercises and select homework problems - Covers updated information on adjoint methods that are presented in an accessible manner




Selected Papers on Probability and Statistics


Book Description

This volume contains translations of papers that originally appeared in the Japanese journal Sugaku. The papers range over a variety of topics in probability theory, statistics, and applications. This volume is suitable for graduate students and research mathematicians interested in probability and statistics.




Probability Inequalities in Multivariate Distributions


Book Description

Probability Inequalities in Multivariate Distributions is a comprehensive treatment of probability inequalities in multivariate distributions, balancing the treatment between theory and applications. The book is concerned only with those inequalities that are of types T1-T5. The conditions for such inequalities range from very specific to very general. Comprised of eight chapters, this volume begins by presenting a classification of probability inequalities, followed by a discussion on inequalities for multivariate normal distribution as well as their dependence on correlation coefficients. The reader is then introduced to inequalities for other well-known distributions, including the multivariate distributions of t, chi-square, and F; inequalities for a class of symmetric unimodal distributions and for a certain class of random variables that are positively dependent by association or by mixture; and inequalities obtainable through the mathematical tool of majorization and weak majorization. The book also describes some distribution-free inequalities before concluding with an overview of their applications in simultaneous confidence regions, hypothesis testing, multiple decision problems, and reliability and life testing. This monograph is intended for mathematicians, statisticians, students, and those who are primarily interested in inequalities.