Euclid's Elements (the Thirteen Books)


Book Description

Euclid was a mathematician from the Greek city of Alexandria who lived during the 4th and 3rd century B.C. and is often referred to as the "father of geometry." Within his foundational treatise "Elements," Euclid presents the results of earlier mathematicians and includes many of his own theories in a systematic, concise book that utilized a brief set of axioms and meticulous proofs to solidify his deductions. In addition to its easily referenced geometry, "Elements" also includes number theory and other mathematical considerations. For centuries, this work was a primary textbook of mathematics, containing the only framework for geometry known by mathematicians until the development of "non-Euclidian" geometry in the late 19th century. The extent to which Euclid's "Elements" is of his own original authorship or borrowed from previous scholars is unknown, however despite this fact it was his collation of these basic mathematical principles for which most of the world would come to the study of geometry. Today, Euclid's "Elements" is acknowledged as one of the most influential mathematical texts in history. This volume includes all thirteen books of Euclid's "Elements," is printed on premium acid-free paper, and follows the translation of Thomas Heath.




Euclid's Elements in Greek


Book Description

Euclid's Elements is the most famous mathematical work of classical antiquity, and has had a profound influence on the development of modern Mathematics and Physics. This volume contains the definitive Ancient Greek text of J.L. Heiberg (1883), together with an English translation. For ease of use, the Greek text and the corresponding English text are on facing pages. Moreover, the figures are drawn with both Greek and English symbols. Finally, a helpful Greek/English lexicon explaining Ancient Greek mathematical jargon is appended. Volume II contains Books 5-9, and covers the fundamentals of proportion, similar figures, and number theory.




Philosophy of Mathematics and Deductive Structure in Euclid's Elements


Book Description

A survey of Euclid's Elements, this text provides an understanding of the classical Greek conception of mathematics. It offers a well-rounded perspective, examining similarities to modern views as well as differences. Rather than focusing strictly on historical and mathematical issues, the book examines philosophical, foundational, and logical questions. Although comprehensive in its treatment, this study represents a less cumbersome, more streamlined approach than the classic three-volume reference by Sir Thomas L. Heath (also available from Dover Publications). To make reading easier and to facilitate access to individual analyses and discussions, the author has included helpful appendixes. These list special symbols and additional propositions, along with all of the assumptions and propositions of the Elements and notations of their discussion within this volume.




Euclid's Elements Book One with Questions for Discussion


Book Description

Presents Book One of Euclid's Elements for students in humanities and for general readers. This treatment raises deep questions about the nature of human reason and its relation to the world. Dana Densmore's Questions for Discussion are intended as examples, to urge readers to think more carefully about what they are watching unfold, and to help them find their own questions in a genuine and exhilarating inquiry.







Elements of Euclid


Book Description




The Elements


Book Description




The King of Infinite Space


Book Description

Geometry defines the world around us, helping us make sense of everything from architecture to military science to fashion. And for over two thousand years, geometry has been equated with Euclid's Elements, arguably the most influential book in the history of mathematics In The King of Infinite Space, renowned mathematics writer David Berlinski provides a concise homage to this elusive mathematician and his staggering achievements. Berlinski shows that, for centuries, scientists and thinkers from Copernicus to Newton to Einstein have relied on Euclid's axiomatic system, a method of proof still taught in classrooms around the world. Euclid's use of elemental logic -- and the mathematical statements he and others built from it -- have dramatically expanded the frontiers of human knowledge. The King of Infinite Space presents a rich, accessible treatment of Euclid and his beautifully simple geometric system, which continues to shape the way we see the world.




The First Six Books of the Elements of Euclid


Book Description

This edition of the Elements of Euclid, undertaken at the request of the principalsof some of the leading Colleges and Schools of Ireland, is intended tosupply a want much felt by teachers at the present day-the production of awork which, while giving the unrivalled original in all its integrity, would alsocontain the modern conceptions and developments of the portion of Geometryover which the Elements extend. A cursory examination of the work will showthat the Editor has gone much further in this latter direction than any of hispredecessors, for it will be found to contain, not only more actual matter thanis given in any of theirs with which he is acquainted, but also much of a specialcharacter, which is not given, so far as he is aware, in any former work on thesubject. The great extension of geometrical methods in recent times has madesuch a work a necessity for the student, to enable him not only to read with advantage, but even to understand those mathematical writings of modern timeswhich require an accurate knowledge of Elementary Geometry, and to which itis in reality the best introduction




Euclid's Elements of Geometry


Book Description

EUCLID'S ELEMENTS OF GEOMETRY, in Greek and English. The Greek text of J.L. Heiberg (1883-1885), edited, and provided with a modern English translation, by Richard Fitzpatrick.[Description from Wikipedia: ] The Elements (Ancient Greek: Στοιχεῖον Stoikheîon) is a mathematical treatise consisting of 13 books (all included in this volume) attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt c. 300 BC. It is a collection of definitions, postulates, propositions (theorems and constructions), and mathematical proofs of the propositions. The books cover plane and solid Euclidean geometry, elementary number theory, and incommensurable lines. Elements is the oldest extant large-scale deductive treatment of mathematics. It has proven instrumental in the development of logic and modern science, and its logical rigor was not surpassed until the 19th century.