EUROMICRO 96


Book Description




Euro-Par '96 - Parallel Processing


Book Description

Content Description #Includes bibliographical references and index.




Euro-Par'96 - Parallel Processing


Book Description

Content Description #Includes bibliographical references and index.




Measurement, Modeling, and Evaluation of Computing Systems and Dependability and Fault Tolerance


Book Description

This book constitutes the refereed proceedings of the 16th International GI/ITG Conference on Measurement, Modeling and Evaluation of Computing Systems and Dependability and Fault Tolerance, MMB & DFT 2012, held in Kaiserslautern, Germany, in March 2012. The 16 revised full papers presented together with 5 tool papers and 5 selected workshop papers were carefully reviewed and selected from 54 submissions. MMB & DFT 2012 covers diverse aspects of performance and dependability evaluation of systems including networks, computer architectures, distributed systems, software, fault-tolerant and secure systems.




System Synthesis with VHDL


Book Description

Embedded systems are usually composed of several interacting components such as custom or application specific processors, ASICs, memory blocks, and the associated communication infrastructure. The development of tools to support the design of such systems requires a further step from high-level synthesis towards a higher abstraction level. The lack of design tools accepting a system-level specification of a complete system, which may include both hardware and software components, is one of the major bottlenecks in the design of embedded systems. Thus, more and more research efforts have been spent on issues related to system-level synthesis. This book addresses the two most active research areas of design automation today: high-level synthesis and system-level synthesis. In particular, a transformational approach to synthesis from VHDL specifications is described. System Synthesis with VHDL provides a coherent view of system synthesis which includes the high-level and the system-level synthesis tasks. VHDL is used as a specification language and several issues concerning the use of VHDL for high-level and system-level synthesis are discussed. These include aspects from the compilation of VHDL into an internal design representation to the synthesis of systems specified as interacting VHDL processes. The book emphasizes the use of a transformational approach to system synthesis. A Petri net based design representation is rigorously defined and used throughout the book as a basic vehicle for illustration of transformations and other design concepts. Iterative improvement heuristics, such as tabu search, simulated annealing and genetic algorithms, are discussed and illustrated as strategies which are used to guide the optimization process in a transformation-based design environment. Advanced topics, including hardware/software partitioning, test synthesis and low power synthesis are discussed from the perspective of a transformational approach to system synthesis. System Synthesis with VHDL can be used for advanced undergraduate or graduate courses in the area of design automation and, more specifically, of high-level and system-level synthesis. At the same time the book is intended for CAD developers and researchers as well as industrial designers of digital systems who are interested in new algorithms and techniques supporting modern design tools and methodologies.




Advanced Techniques for Embedded Systems Design and Test


Book Description

As electronic technology reaches the point where complex systems can be integrated on a single chip, and higher degrees of performance can be achieved at lower costs, designers must devise new ways to undertake the laborious task of coping with the numerous, and non-trivial, problems that arise during the conception of such systems. On the other hand, shorter design cycles (so that electronic products can fit into shrinking market windows) put companies, and consequently designers, under pressure in a race to obtain reliable products in the minimum period of time. New methodologies, supported by automation and abstraction, have appeared which have been crucial in making it possible for system designers to take over the traditional electronic design process and embedded systems is one of the fields that these methodologies are mainly targeting. The inherent complexity of these systems, with hardware and software components that usually execute concurrently, and the very tight cost and performance constraints, make them specially suitable to introduce higher levels of abstraction and automation, so as to allow the designer to better tackle the many problems that appear during their design. Advanced Techniques for Embedded Systems Design and Test is a comprehensive book presenting recent developments in methodologies and tools for the specification, synthesis, verification, and test of embedded systems, characterized by the use of high-level languages as a road to productivity. Each specific part of the design process, from specification through to test, is looked at with a constant emphasis on behavioral methodologies. Advanced Techniques for Embedded Systems Design and Test is essential reading for all researchers in the design and test communities as well as system designers and CAD tools developers.




Low Power Design in Deep Submicron Electronics


Book Description

Low Power Design in Deep Submicron Electronics deals with the different aspects of low power design for deep submicron electronics at all levels of abstraction from system level to circuit level and technology. Its objective is to guide industrial and academic engineers and researchers in the selection of methods, technologies and tools and to provide a baseline for further developments. Furthermore the book has been written to serve as a textbook for postgraduate student courses. In order to achieve both goals, it is structured into different chapters each of which addresses a different phase of the design, a particular level of abstraction, a unique design style or technology. These design-related chapters are amended by motivations in Chapter 2, which presents visions both of future low power applications and technology advancements, and by some advanced case studies in Chapter 9. From the Foreword: `... This global nature of design for low power was well understood by Wolfgang Nebel and Jean Mermet when organizing the NATO workshop which is the origin of the book. They invited the best experts in the field to cover all aspects of low power design. As a result the chapters in this book are covering deep-submicron CMOS digital system design for low power in a systematic way from process technology all the way up to software design and embedded software systems. Low Power Design in Deep Submicron Electronics is an excellent guide for the practicing engineer, the researcher and the student interested in this crucial aspect of actual CMOS design. It contains about a thousand references to all aspects of the recent five years of feverish activity in this exciting aspect of design.' Hugo de Man Professor, K.U. Leuven, Belgium Senior Research Fellow, IMEC, Belgium




Vector and Parallel Processing - VECPAR'96


Book Description

This book constitutes a carefully arranged selection of revised full papers chosen from the presentations given at the Second International Conference on Vector and Parallel Processing - Systems and Applications, VECPAR'96, held in Porto, Portugal, in September 1996. Besides 10 invited papers by internationally leading experts, 17 papers were accepted from the submitted conference papers for inclusion in this documentation following a second round of refereeing. A broad spectrum of topics and applications for which parallelism contributes to progress is covered, among them parallel linear algebra, computational fluid dynamics, data parallelism, implementational issues, optimization, finite element computations, simulation, and visualisation.




Embedded System Design


Book Description

A unique feature of this textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This third edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems and the Internet of things, the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues.




Artificial Intelligence in Logic Design


Book Description

There are three outstanding points of this book. First: for the first time, a collective point of view on the role of artificial intelligence paradigm in logic design is introduced. Second, the book reveals new horizons of logic design tools on the technologies of the near future. Finally, the contributors of the book are twenty recognizable leaders in the field from the seven research centres. The chapters of the book have been carefully reviewed by equally qualified experts. All contributors are experienced in practical electronic design and in teaching engineering courses. Thus, the book's style is accessible to graduate students, practical engineers and researchers.