Mechanisms of Drug Toxicity


Book Description

Mechanisms of Drug Toxicity, Volume 4 presents the proceedings of the 3rd International Pharmacological Meeting held in Sao Paulo, Brazil in 1966. The book discusses the drug-induced pathobiotic effects; the mechanisms of adverse reactions; and enzyme induction in the mechanism of chronic toxicity. The text also describes the influence of inducing substances on the growth of liver and microsomal electron transport systems; the quantitative aspects of chronic toxicity; and the facts and fallacies in predicting drug effects in human.




Applications of Toxicogenomic Technologies to Predictive Toxicology and Risk Assessment


Book Description

The new field of toxicogenomics presents a potentially powerful set of tools to better understand the health effects of exposures to toxicants in the environment. At the request of the National Institute of Environmental Health Sciences, the National Research Council assembled a committee to identify the benefits of toxicogenomics, the challenges to achieving them, and potential approaches to overcoming such challenges. The report concludes that realizing the potential of toxicogenomics to improve public health decisions will require a concerted effort to generate data, make use of existing data, and study data in new waysâ€"an effort requiring funding, interagency coordination, and data management strategies.




Drug-Induced Liver Injury


Book Description

Drug-Induced Liver Injury, Volume 85, the newest volume in the Advances in Pharmacology series, presents a variety of chapters from the best authors in the field. Chapters in this new release include Cell death mechanisms in DILI, Mitochondria in DILI, Primary hepatocytes and their cultures for the testing of drug-induced liver injury, MetaHeps an alternate approach to identify IDILI, Autophagy and DILI, Biomarkers and DILI, Regeneration and DILI, Drug-induced liver injury in obesity and nonalcoholic fatty liver disease, Mechanisms of Idiosyncratic Drug-Induced Liver Injury, the Evaluation and Treatment of Acetaminophen Toxicity, and much more. - Includes the authority and expertise of leading contributors in pharmacology - Presents the latest release in the Advances in Pharmacology series




Science and Judgment in Risk Assessment


Book Description

The public depends on competent risk assessment from the federal government and the scientific community to grapple with the threat of pollution. When risk reports turn out to be overblownâ€"or when risks are overlookedâ€"public skepticism abounds. This comprehensive and readable book explores how the U.S. Environmental Protection Agency (EPA) can improve its risk assessment practices, with a focus on implementation of the 1990 Clean Air Act Amendments. With a wealth of detailed information, pertinent examples, and revealing analysis, the volume explores the "default option" and other basic concepts. It offers two views of EPA operations: The first examines how EPA currently assesses exposure to hazardous air pollutants, evaluates the toxicity of a substance, and characterizes the risk to the public. The second, more holistic, view explores how EPA can improve in several critical areas of risk assessment by focusing on cross-cutting themes and incorporating more scientific judgment. This comprehensive volume will be important to the EPA and other agencies, risk managers, environmental advocates, scientists, faculty, students, and concerned individuals.




Scientific Frontiers in Developmental Toxicology and Risk Assessment


Book Description

Scientific Frontiers in Developmental Toxicology and Risk Assessment reviews advances made during the last 10-15 years in fields such as developmental biology, molecular biology, and genetics. It describes a novel approach for how these advances might be used in combination with existing methodologies to further the understanding of mechanisms of developmental toxicity, to improve the assessment of chemicals for their ability to cause developmental toxicity, and to improve risk assessment for developmental defects. For example, based on the recent advances, even the smallest, simplest laboratory animals such as the fruit fly, roundworm, and zebrafish might be able to serve as developmental toxicological models for human biological systems. Use of such organisms might allow for rapid and inexpensive testing of large numbers of chemicals for their potential to cause developmental toxicity; presently, there are little or no developmental toxicity data available for the majority of natural and manufactured chemicals in use. This new approach to developmental toxicology and risk assessment will require simultaneous research on several fronts by experts from multiple scientific disciplines, including developmental toxicologists, developmental biologists, geneticists, epidemiologists, and biostatisticians.




Atkinson's Principles of Clinical Pharmacology


Book Description

**Selected for Doody's Core Titles® 2024 in Pharmacology**Atkinson's Principles of Clinical Pharmacology, Fourth Edition is the essential reference on the pharmacologic principles underlying the individualization of patient therapy and contemporary drug development. This well-regarded survey continues to focus on the basics of clinical pharmacology for the development, evaluation and clinical use of pharmaceutical products while also addressing the most recent advances in the field. Written by leading experts in academia, industry, clinical and regulatory settings, the fourth edition has been thoroughly updated to provide readers with an ideal reference on the wide range of important topics impacting clinical pharmacology. - Presents the essential knowledge for effective practice of clinical pharmacology - Includes a new chapter and extended discussion on the role of personalized and precision medicine in clinical pharmacology - Offers an extensive regulatory section that addresses US and international issues and guidelines - Provides extended coverage of earlier chapters on transporters, pharmacogenetics and biomarkers, along with further discussion on "Phase 0" studies (microdosing) and PBPK







Adverse Effects of Cancer Chemotherapy: Anything New to Improve Tolerance and Reduce Sequelae?


Book Description

Advances in anti-cancer chemotherapy over recent years have led to improved efficacy in curing or controlling many cancers. Some chemotherapy-related side-effects are well recognized and include: nausea, vomiting, bone marrow suppression, peripheral neuropathy, cardiac and skeletal muscle dysfunction and renal impairment. However, it is becoming clearer that some chemotherapy-related adverse effects may persist even in long term cancer survivors. Problems such as cognitive, cardiovascular and gastrointestinal dysfunction, and neuropathy may lead to substantial long term morbidity. Despite improvements in treatments to counteract acute chemotherapy-induced adverse effects, they are often incompletely effective. Furthermore, counter-measures for some acute side-effects and many potential longer term sequelae of anti-cancer chemotherapy have not been developed. Thus, new insights into prevalence and mechanisms of cancer chemotherapy-related side effects are needed and new approaches to improving tolerance and reduce sequelae of cancer chemotherapy are urgently needed. The present Research Topic focuses on adverse effects and sequelae of chemotherapy and strategies to counteract them.




Wildlife Toxicity Assessments for Chemicals of Military Concern


Book Description

Wildlife Toxicity Assessments for Chemicals of Military Concern is a compendium of chemical-specific toxicity information with discussions on the rationale and development of Wildlife Toxicity Reference Values (TRVs) intended for use on terrestrial wildlife for risk assessment applications. Substances covered include military-related chemicals including explosives, propellants, pesticides and metals. Wildlife Toxicity Assessments for Chemicals of Military Concern is a much-needed resource designed to meet the needs of those seeking toxicological information for ecological risk assessment purposes. Each chapter targets a specific chemical and considers the current knowledge of the toxicological impacts of chemicals to terrestrial wildlife including mammalian, avian, amphibian and reptilian species. - Provides detailed information on how Wildlife Toxicity Values (TRVs) for military chemicals of concern are derived and evaluated. - Covers wildlife toxicity assessments of explosives, metals and environmental chemicals. - Compiles relevant information on the environmental effects of chemicals on wildlife in relation to public and environmental health.




Improving and Accelerating Therapeutic Development for Nervous System Disorders


Book Description

Improving and Accelerating Therapeutic Development for Nervous System Disorders is the summary of a workshop convened by the IOM Forum on Neuroscience and Nervous System Disorders to examine opportunities to accelerate early phases of drug development for nervous system drug discovery. Workshop participants discussed challenges in neuroscience research for enabling faster entry of potential treatments into first-in-human trials, explored how new and emerging tools and technologies may improve the efficiency of research, and considered mechanisms to facilitate a more effective and efficient development pipeline. There are several challenges to the current drug development pipeline for nervous system disorders. The fundamental etiology and pathophysiology of many nervous system disorders are unknown and the brain is inaccessible to study, making it difficult to develop accurate models. Patient heterogeneity is high, disease pathology can occur years to decades before becoming clinically apparent, and diagnostic and treatment biomarkers are lacking. In addition, the lack of validated targets, limitations related to the predictive validity of animal models - the extent to which the model predicts clinical efficacy - and regulatory barriers can also impede translation and drug development for nervous system disorders. Improving and Accelerating Therapeutic Development for Nervous System Disorders identifies avenues for moving directly from cellular models to human trials, minimizing the need for animal models to test efficacy, and discusses the potential benefits and risks of such an approach. This report is a timely discussion of opportunities to improve early drug development with a focus toward preclinical trials.