Evapotranspiration Over Heterogeneous Vegetated Surfaces


Book Description

The focus of this work is the development of models to estimate evapotranspiration (ET), investigating the partitioning between soil evaporation and plant transpiration at field and regional scales, and calculating ET over heterogeneous vegetated surfaces. Different algorithms with varying complexities as well as spatial and temporal resolutions are developed to estimate evapotranspiration from different data inputs. The author proposes a novel approach to estimate ET from remote sensing by exploiting the linkage between water and carbon cycles. At the field scale, a hybrid dual source model (H-D model) is proposed. It is verified with field observations over four different ecosystems and coupled with a soil water and heat transfer model, to simulate water and heat transfer in the soil-plant-atmosphere continuum. At the regional scale, a hybrid dual source scheme and trapezoid framework based ET model (HTEM), using remote sensing images is developed. This model is verified with data from the USA and China and the impact of agricultural water-saving on ET of different land use types is analyzed, in these chapters. The author discusses the potential of using a remote sensing ET model in the real management of water resources in a large irrigation district. This work would be of particular interest to any hydrologist or micro-meteorologist who works on ET estimation and it will also appeal to the ecologist who works on the coupled water and carbon cycles. Land evapotranspiration is an important research topic in hydrology, meteorology, ecology and agricultural sciences. Dr. Yuting Yang works at the CSIRO Land and Water, Canberra, Australia.




Remote Sensing of Evapotranspiration (ET)


Book Description

Evapotranspiration (ET) is a critical component of the water and energy balances, and the number of remote sensing-based ET products and estimation methods has increased in recent years. Various aspects of remote sensing of ET are reported in the 11 papers published in this book. The major research areas covered by this book include inter-comparison and performance evaluation of widely used one- and two-source energy balance models, a new dual-source model (Soil Plant Atmosphere and Remote Sensing Evapotranspiration, SPARSE), and a process-based model (ETMonitor); assessment of multi-source (e.g., remote sensing, reanalysis, and land surface model) ET products; development or improvement of data fusion frameworks to predict continuous daily ET at a high spatial resolution (field-scale or 30 m) by fusing the advanced spaceborne thermal emission reflectance radiometer (ASTER), the moderate resolution imaging spectroradiometer (MODIS), and Landsat data; and investigating uncertainties in ET estimates using an ET ensemble composed of several land surface models and diagnostic datasets. The effects of the differences between ET products on water resources and ecosystem management were also investigated. More accurate ET estimates and improved understanding of remotely sensed ET products are crucial for maximizing crop productivity while minimizing water losses and management costs.




Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments


Book Description

Unmanned Aerial Systems for Monitoring Soil, Vegetation, and Riverine Environments provides an overview of how unmanned aerial systems have revolutionized our capability to monitor river systems, soil characteristics, and related processes at unparalleled spatio-temporal resolutions. This capability has enabled enhancements in our capacity to describe water cycle and hydrological processes. The book includes guidelines, technical advice, and practical experience to support practitioners and scientists in increasing the efficiency of monitoring with the help of UAS. The book contains field survey datasets to use as practical exercises, allowing proposed techniques and methods to be applied to real world case studies. - Includes a summary of technical UAS issues allowing readers to focus on how the exact technology fits their scientific question - Provides specific applications enabling readers to understand the benefits and threats within the field - Includes a comprehensive literature review in each chapter, allowing readers to know the key players and research in the field




The Dictionary of Physical Geography


Book Description

This fully-revised comprehensive fourth edition covers the whole field of physical geography including climate and atmosphere, geomorphology, biogeography, hydrology, oceans, Quaternary, environmental change, soils, remote sensing and GIS. This new edition reflects developments in the discipline during the last decade, with the expert advisory group providing an international perspective on the discipline of physical geography. Over 2000 entries that are self-contained or cross-referenced include 200 that are new to this edition, over 400 that are rewritten and updated, and new supporting references and additional recommended reading in many others. Entries removed from the last edition are available in the online resource. This volume is the essential reference point for students of physical geography and related environmental disciplines, lecturers and interested individuals alike.




Hydrology in Practice


Book Description

Hydrology in Practice is an excellent and very successful introductory text for engineering hydrology students who go on to be practitioners in consultancies, the Environment Agency, and elsewhere. This fourth edition of Hydrology in Practice, while retaining all that is excellent about its predecessor, by Elizabeth M. Shaw, replaces the material on the Flood Studies Report with an equivalent section on the methods of the Flood Estimation Handbook and its revisions. Other completely revised sections on instrumentation and modelling reflect the many changes that have occurred over recent years. The updated text has taken advantage of the extensive practical experience of the staff of JBA Consulting who use the methods described on a day-to-day basis. Topical case studies further enhance the text and the way in which students at undergraduate and MSc level can relate to it. The fourth edition will also have a wider appeal outside the UK by including new material on hydrological processes, which also relate to courses in geography and environmental science departments. In this respect the book draws on the expertise of Keith J. Beven and Nick A. Chappell, who have extensive experience of field hydrological studies in a variety of different environments, and have taught undergraduate hydrology courses for many years. Second- and final-year undergraduate (and MSc) students of hydrology in engineering, environmental science, and geography departments across the globe, as well as professionals in environmental protection agencies and consultancies, will find this book invaluable. It is likely to be the course text for every undergraduate/MSc hydrology course in the UK and in many cases overseas too.




Meteorology of Tropical West Africa


Book Description

Meteorology of tropical West Africa: the Forecasters’ Handbook presents the science and practice of weather forecasting for an important region of the tropics. Connecting basic theory with forecasting practice, the book provides a unique training volume for operational weather forecasters, and is also suitable for students of tropical meteorology. The West African region contains a number of archetypal climatic zones, meaning that the science of its weather and climate applies to many other tropical regions. West Africa also exhibits some of the world’s most remarkable weather systems, making it an inspiring region for students to investigate. The weather of West Africa affects human livelihoods on a daily basis, and can contribute to hardship, poverty and mortality. Therefore, the ability to understand and predict the weather has the potential to deliver significant benefits to both society and economies. The book includes comprehensive background material alongside documentation of weather forecasting methods. Many examples taken from observations of West African weather systems are included and online case-studies are referenced widely.




Water-Soil-Vegetation Nexus and Climate Change


Book Description

Water-Soil-Vegetation Nexus and Climate Change presents a broad overview of the research needs and approaches regarding water-soil-vegetation nexus and climate change. It includes chapters discussing water budget and factors that affect hydrologic processes such as precipitation, runoff, infiltration, evapotranspiration, soil water, and groundwater, in addition to a focus on consumptive (e.g., domestic and irrigation) and non-consumptive (e.g., eco-environmental) water uses, and water shortage. Throughout Water-Soil-Vegetation Nexus and Climate Change chapters specifically deal with the fundamental principles and also case studies, applications, and decision support tools, that can be usable for developing practical management measures in sustaining our eco-environment and society by maintaining an optimal water-soil-vegetation equilibrium. Written with water resources students and professors in mind, this book will provide the reader with further knowledge on the water-soil-vegetation nexus and its connection to climate change. - Includes both principles and applications, providing the reader with options for both application types as needed - Emphasizes the nexuses rather than individual processes, allowing the reader to understand the whole picture - Presents case studies and decision support tools that can be used for developing practical management measures in changing climate




Evapotranspiration in the Soil-Plant-Atmosphere System


Book Description

Evapotranspiration and its components (evaporation and transpiration) as a process is one of the basic terms of Earth's water balance; its importance is accented by the fact that transpiration is the vital element of the biomass production process. The second important property of evapotranspiration is its extreme consumption of solar energy, thus controlling the temperature of the atmosphere and creating favourable conditions for life. Evapotranspiration as an energy consuming process is also the connection between the energy and mass cycles of the Earth. Evapotranspiration is a process performing in the Soil–Plant –Atmosphere System (SPAS); therefore this book is presenting and quantifying it as a catenary process, describing transport of water in the soil, including root extraction patterns and methods of its evaluation. Transport of water through the plant and from the canopy to the atmosphere is also described and quantified. A variety of evapotranspiration (and its components evaporation and transpiration) calculation methods are described, starting from empirical methods up to the most sophisticated ones based on the solution of the transport equations of water and energy in the SPAS. The most important (and widely used) calculation method - modified Penman–Monteith method is described in details, ready to be used with data in the book only. Water balance method of evapotranspiration estimation as well as sap flow method description can be found in the book as well. The book can be used by hydrologists, biologists, meteorologists and other specialists as well as by ecology students. Key themes: soil hydrology – evapotranspiration – hydropedology– plant physiology – water movement in soils – evaporation – transpiration Dr. Viliam Novák is a water resources scientist at the Institute of Hydrology of the Slovak Academy of Sciences in Bratislava (Slovakia).







Dryland Climatology


Book Description

This book provides a comprehensive overview of dryland climates and their relationship to the physical environment, vegetation, hydrology, and inhabitants. Packed with photographs and an extensive review of the primary literature, this is a unique interdisciplinary resource for researchers, environmental professionals and advanced students in fields from climatology to geomorphology.