Evolution of Systems in Random Media


Book Description

Evolution of Systems in Random Media is an innovative, application-oriented text that explores stochastic models of evolutionary stochastic systems in random media. Specially designed for researchers and practitioners who do not have a background in random evolutions, the book allows non-experts to explore the potential information and applications that random evolutions can provide.




Evolution of Biological Systems in Random Media: Limit Theorems and Stability


Book Description

This is a new book in biomathematics, which includes new models of stochastic non-linear biological systems and new results for these systems. These results are based on the new results for non-linear difference and differential equations in random media. This book contains: -New stochastic non-linear models of biological systems, such as biological systems in random media: epidemic, genetic selection, demography, branching, logistic growth and predator-prey models; -New results for scalar and vector difference equations in random media with applications to the stochastic biological systems in 1); -New results for stochastic non-linear biological systems, such as averaging, merging, diffusion approximation, normal deviations and stability; -New approach to the study of stochastic biological systems in random media such as random evolution approach.




Random Evolutions and their Applications


Book Description

The book is devoted to the new trends in random evolutions and their various applications to stochastic evolutionary sytems (SES). Such new developments as the analogue of Dynkin's formulae, boundary value problems, stochastic stability and optimal control of random evolutions, stochastic evolutionary equations driven by martingale measures are considered. The book also contains such new trends in applied probability as stochastic models of financial and insurance mathematics in an incomplete market. In the famous classical financial mathematics Black-Scholes model of a (B,S) market for securities prices, which is used for the description of the evolution of bonds and stocks prices and also for their derivatives, such as options, futures, forward contracts, etc., it is supposed that the dynamic of bonds and stocks prices are set by a linear differential and linear stochastic differential equations, respectively, with interest rate, appreciation rate and volatility such that they are predictable processes. Also, in the Arrow-Debreu economy, the securities prices which support a Radner dynamic equilibrium are a combination of an Ito process and a random point process, with the all coefficients and jumps being predictable processes.




Semi-Markov Random Evolutions


Book Description

The evolution of systems in random media is a broad and fruitful field for the applica tions of different mathematical methods and theories. This evolution can be character ized by a semigroup property. In the abstract form, this property is given by a semigroup of operators in a normed vector (Banach) space. In the practically boundless variety of mathematical models of the evolutionary systems, we have chosen the semi-Markov ran dom evolutions as an object of our consideration. The definition of the evolutions of this type is based on rather simple initial assumptions. The random medium is described by the Markov renewal processes or by the semi Markov processes. The local characteristics of the system depend on the state of the ran dom medium. At the same time, the evolution of the system does not affect the medium. Hence, the semi-Markov random evolutions are described by two processes, namely, by the switching Markov renewal process, which describes the changes of the state of the external random medium, and by the switched process, i.e., by the semigroup of oper ators describing the evolution of the system in the semi-Markov random medium.




Particle Systems, Random Media and Large Deviations


Book Description

Covers the proceedings of the 1984 AMS Summer Research Conference. This work provides a summary of results from some of the areas in probability theory; interacting particle systems, percolation, random media (bulk properties and hydrodynamics), the Ising model and large deviations.




Random Evolutionary Systems


Book Description

Within the field of modeling complex objects in natural sciences, which considers systems that consist of a large number of interacting parts, a good tool for analyzing and fitting models is the theory of random evolutionary systems, considering their asymptotic properties and large deviations. In Random Evolutionary Systems we consider these systems in terms of the operators that appear in the schemes of their diffusion and the Poisson approximation. Such an approach allows us to obtain a number of limit theorems and asymptotic expansions of processes that model complex stochastic systems, both those that are autonomous and those dependent on an external random environment. In this case, various possibilities of scaling processes and their time parameters are used to obtain different limit results.




Discrete-Time Semi-Markov Random Evolutions and Their Applications


Book Description

This book extends the theory and applications of random evolutions to semi-Markov random media in discrete time, essentially focusing on semi-Markov chains as switching or driving processes. After giving the definitions of discrete-time semi-Markov chains and random evolutions, it presents the asymptotic theory in a functional setting, including weak convergence results in the series scheme, and their extensions in some additional directions, including reduced random media, controlled processes, and optimal stopping. Finally, applications of discrete-time semi-Markov random evolutions in epidemiology and financial mathematics are discussed. This book will be of interest to researchers and graduate students in applied mathematics and statistics, and other disciplines, including engineering, epidemiology, finance and economics, who are concerned with stochastic models of systems.




Markov Random Flights


Book Description

Markov Random Flights is the first systematic presentation of the theory of Markov random flights in the Euclidean spaces of different dimensions. Markov random flights is a stochastic dynamic system subject to the control of an external Poisson process and represented by the stochastic motion of a particle that moves at constant finite speed and changes its direction at random Poisson time instants. The initial (and each new) direction is taken at random according to some probability distribution on the unit sphere. Such stochastic motion is the basic model for describing many real finite-velocity transport phenomena arising in statistical physics, chemistry, biology, environmental science and financial markets. Markov random flights acts as an effective tool for modelling the slow and super-slow diffusion processes arising in various fields of science and technology. Features: Provides the first systematic presentation of the theory of Markov random flights in the Euclidean spaces of different dimensions. Suitable for graduate students and specialists and professionals in applied areas. Introduces a new unified approach based on the powerful methods of mathematical analysis, such as integral transforms, generalized, hypergeometric and special functions. Author Alexander D. Kolesnik is a professor, Head of Laboratory (2015–2019) and principal researcher (since 2020) at the Institute of Mathematics and Computer Science, Kishinev (Chișinău), Moldova. He graduated from Moldova State University in 1980 and earned his PhD from the Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev in 1991. He also earned a PhD Habilitation in mathematics and physics with specialization in stochastic processes, probability and statistics conferred by the Specialized Council at the Institute of Mathematics of the National Academy of Sciences of Ukraine and confirmed by the Supreme Attestation Commission of Ukraine in 2010. His research interests include: probability and statistics, stochastic processes, random evolutions, stochastic dynamic systems, random flights, diffusion processes, transport processes, random walks, stochastic processes in random environments, partial differential equations in stochastic models, statistical physics and wave processes. Dr. Kolesnik has published more than 70 scientific publications, mostly in high-standard international journals and a monograph. He has also acted as external referee for many outstanding international journals in mathematics and physics, being awarded by the "Certificate of Outstanding Contribution in Reviewing" from the journal "Stochastic Processes and their Applications." He was the visiting professor and scholarship holder at universities in Italy and Germany and member of the Board of Global Advisors of the International Federation of Nonlinear Analysts (IFNA), United States of America.




Asymptotic and Analytic Methods in Stochastic Evolutionary Symptoms


Book Description

This book illustrates a number of asymptotic and analytic approaches applied for the study of random evolutionary systems, and considers typical problems for specific examples. In this case, constructive mathematical models of natural processes are used, which more realistically describe the trajectories of diffusion-type processes, rather than those of the Wiener process. We examine models where particles have some free distance between two consecutive collisions. At the same time, we investigate two cases: the Markov evolutionary system, where the time during which the particle moves towards some direction is distributed exponentially with intensity parameter λ; and the semi-Markov evolutionary system, with arbitrary distribution of the switching process. Thus, the models investigated here describe the motion of particles with a finite speed and the proposed random evolutionary process with characteristics of a natural physical process: free run and finite propagation speed. In the proposed models, the number of possible directions of evolution can be finite or infinite.




Interacting Stochastic Systems


Book Description

Core papers emanating from the research network, DFG-Schwerpunkt: Interacting stochastic systems of high complexity.