Exercises with Solutions in Radiation Physics


Book Description

The textbook begins with exercises related to radioactive sources and decay schemes. The problems covered include series decay and how to determine the frequency and energy of emitted particles in disintegrations. The next chapter deals with the interaction of ionizing radiation, including the treatment of photons and charged particles. The main focus is on applications based on the knowledge of interaction, to be used in subsequent work and courses. The textbook then examines detectors and measurements, including both counting statistics and properties of pulse detectors. The chapter that follows is dedicated to dosimetry, which is a major subject in medical radiation physics. It covers theoretical applications, such as different equilibrium situations and cavity theories, as well as experimental dosimetry, including ionization chambers and solid state and liquid dosimeters. A shorter chapter deals with radiobiology, where different cell survival models are considered. The last chapter concerns radiation protection and health physics. Both radioecology and radiation shielding calculations are covered. The textbook includes tables to simplify the solutions of the exercises, but the reader is mainly referred to important websites for importing necessary data.




Compendium to Radiation Physics for Medical Physicists


Book Description

This exercise book contains 300 typical problems and exercises in modern physics and radiation physics with complete solutions, detailed equations and graphs. This textbook is linked directly with the textbook "Radiation Physics for Medical Physicists", Springer (2010) but can also be used in combination with other related textbooks. For ease of use, this textbook has exactly the same organizational layout (14 chapters, 128 sections) as the "Radiation Physics for Medical Physicists" textbook and each section is covered by at least one problem with solution given. Equations, figures and tables are cross-referenced between the two books. It is the only large compilation of textbook material and associated solved problems in medical physics, radiation physics, and biophysics.




Problems and Solutions in Medical Physics


Book Description

The first in a three-volume set exploring Problems and Solutions in Medical Physics, this volume explores common questions and their solutions in Diagnostic Imaging. This invaluable study guide should be used in conjunction with other key textbooks in the field to provide additional learning opportunities. It contains key imaging modalities, exploring X-ray, mammography, and fluoroscopy, in addition to computed tomography, magnetic resonance imaging, and ultrasonography. Each chapter provides examples, notes, and references for further reading to enhance understanding. Features: Consolidates concepts and assists in the understanding and applications of theoretical concepts in medical physics Assists lecturers and instructors in setting assignments and tests Suitable as a revision tool for postgraduate students sitting medical physics, oncology, and radiology sciences examinations




Fundamentals of Ionizing Radiation Dosimetry


Book Description

Fosters a thorough understand of radiation dosimetry concepts: detailed solutions to the exercises in the textbook Fundamentals of Ionizing Radiation Dosimetry!




Khan's The Physics of Radiation Therapy


Book Description

Expand your understanding of the physics and practical clinical applications of advanced radiation therapy technologies with Khan's The Physics of Radiation Therapy, 5th edition, the book that set the standard in the field. This classic full-color text helps the entire radiation therapy team—radiation oncologists, medical physicists, dosimetrists, and radiation therapists—develop a thorough understanding of 3D conformal radiotherapy (3D-CRT), stereotactic radiosurgery (SRS), high dose-rate remote afterloaders (HDR), intensity modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT), Volumetric Modulated Arc Therapy (VMAT), and proton beam therapy, as well as the physical concepts underlying treatment planning, treatment delivery, and dosimetry. In preparing this new Fifth Edition, Dr. Kahn and new co-author Dr. John Gibbons made chapter-by-chapter revisions in the light of the latest developments in the field, adding new discussions, a new chapter, and new color illustrations throughout. Now even more precise and relevant, this edition is ideal as a reference book for practitioners, a textbook for students, and a constant companion for those preparing for their board exams. Features Stay on top of the latest advances in the field with new sections and/or discussions of Image Guided Radiation Therapy (IGRT), Volumetric Modulated Arc Therapy (VMAT), and the Failure Mode Event Analysis (FMEA) approach to quality assurance. Deepen your knowledge of Stereotactic Body Radiotherapy (SBRT) through a completely new chapter that covers SBRT in greater detail. Expand your visual understanding with new full color illustrations that reflect current practice and depict new procedures. Access the authoritative information you need fast through the new companion website which features fully searchable text and an image bank for greater convenience in studying and teaching. This is the tablet version which does not include access to the supplemental content mentioned in the text.




The Physics of Radiation Therapy


Book Description

Dr. Khan's classic textbook on radiation oncology physics is now in its thoroughly revised and updated Fourth Edition. It provides the entire radiation therapy team—radiation oncologists, medical physicists, dosimetrists, and radiation therapists—with a thorough understanding of the physics and practical clinical applications of advanced radiation therapy technologies, including 3D-CRT, stereotactic radiotherapy, HDR, IMRT, IGRT, and proton beam therapy. These technologies are discussed along with the physical concepts underlying treatment planning, treatment delivery, and dosimetry. This Fourth Edition includes brand-new chapters on image-guided radiation therapy (IGRT) and proton beam therapy. Other chapters have been revised to incorporate the most recent developments in the field. This edition also features more than 100 full-color illustrations throughout. A companion Website will offer the fully searchable text and an image bank.




Radiation Physics for Medical Physicists


Book Description

This book summarizes basic knowledge of atomic, nuclear, and radiation physics that professionals need for efficient and safe use of ionizing radiation. Concentrating on the underlying principles of radiation physics, it covers prerequisite knowledge for medical physics courses on the graduate and post-graduate levels, providing the link between elementary physics on the one hand and the intricacies of the medical physics specialties on the other.




Spacetime and Geometry


Book Description

An accessible introductory textbook on general relativity, covering the theory's foundations, mathematical formalism and major applications.




Basic Health Physics


Book Description

Designed to prepare candidates for the American Board of Health Physics Comprehensive examination (Part I) and other certification examinations, this monograph introduces professionals in the field to radiation protection principles and their practical application in routine and emergency situations. It features more than 650 worked examples illustrating concepts under discussion along with in-depth coverage of sources of radiation, standards and regulations, biological effects of ionizing radiation, instrumentation, external and internal dosimetry, counting statistics, monitoring and interpretations, operational health physics, transportation and waste, nuclear emergencies, and more. Reflecting for the first time the true scope of health physics at an introductory level, Basic Health Physics: Problems and Solutions gives readers the tools to properly evaluate challenging situations in all areas of radiation protection, including the medical, university, power reactor, fuel cycle, research reactor, environmental, non-ionizing radiation, and accelerator health physics.




Statistical and Thermal Physics


Book Description

A completely revised edition that combines a comprehensive coverage of statistical and thermal physics with enhanced computational tools, accessibility, and active learning activities to meet the needs of today's students and educators This revised and expanded edition of Statistical and Thermal Physics introduces students to the essential ideas and techniques used in many areas of contemporary physics. Ready-to-run programs help make the many abstract concepts concrete. The text requires only a background in introductory mechanics and some basic ideas of quantum theory, discussing material typically found in undergraduate texts as well as topics such as fluids, critical phenomena, and computational techniques, which serve as a natural bridge to graduate study. Completely revised to be more accessible to students Encourages active reading with guided problems tied to the text Updated open source programs available in Java, Python, and JavaScript Integrates Monte Carlo and molecular dynamics simulations and other numerical techniques Self-contained introductions to thermodynamics and probability, including Bayes' theorem A fuller discussion of magnetism and the Ising model than other undergraduate texts Treats ideal classical and quantum gases within a uniform framework Features a new chapter on transport coefficients and linear response theory Draws on findings from contemporary research Solutions manual (available only to instructors)