Exergy


Book Description

Exergy, Second Edition deals with exergy and its applications to various energy systems and applications as a potential tool for design, analysis and optimization, and its role in minimizing and/or eliminating environmental impacts and providing sustainable development. In this regard, several key topics ranging from the basics of the thermodynamic concepts to advanced exergy analysis techniques in a wide range of applications are covered as outlined in the contents. - Offers comprehensive coverage of exergy and its applications, along with the most up-to-date information in the area with recent developments - Connects exergy with three essential areas in terms of energy, environment and sustainable development - Provides a number of illustrative examples, practical applications, and case studies - Written in an easy-to-follow style, starting from the basics to advanced systems




Energy Efficient Thermal Management of Data Centers


Book Description

Energy Efficient Thermal Management of Data Centers examines energy flow in today's data centers. Particular focus is given to the state-of-the-art thermal management and thermal design approaches now being implemented across the multiple length scales involved. The impact of future trends in information technology hardware, and emerging software paradigms such as cloud computing and virtualization, on thermal management are also addressed. The book explores computational and experimental characterization approaches for determining temperature and air flow patterns within data centers. Thermodynamic analyses using the second law to improve energy efficiency are introduced and used in proposing improvements in cooling methodologies. Reduced-order modeling and robust multi-objective design of next generation data centers are discussed.




Exergy Analysis for Energy Conversion Systems


Book Description

Discover a straightforward and holistic look at energy conversion and conservation processes using the exergy concept with this thorough text. Explains the fundamental energy conversion processes in numerous diverse systems, ranging from jet engines and nuclear reactors to human bodies. Provides examples for applications to practical energy conversion processes and systems that use our naturally occurring energy resources, such as fossil fuels, solar energy, wind, geothermal, and nuclear fuels. With more than one-hundred diverse cases and solved examples, readers will be able to perform optimizations for a cleaner environment, a sustainable energy future, and affordable energy generation. An essential tool for practicing scientists and engineers who work or do research in the area of energy and exergy, as well as graduate students and faculty in chemical engineering, mechanical engineering and physics.




Advances in Heat Transfer


Book Description

Advances in Heat Transfer, Volume 50, provides in-depth review articles from a broader scope than in traditional journals or texts, with this comprehensive release covering chapters on Heat Transfer in Rotating Channels, Advances in Liquid Metal Science and Technology in Chip Cooling and Thermal Management, Heat Transfer in Rotating Cooling Channel, Anomalous Heat Transfer: Examples, Fundamentals, and Fractional Calculus Models, and much more. - Fills the information gap between regularly scheduled journals and university-level textbooks by providing in-depth review articles over a broader scope than in traditional journals or texts - Essential reading for all mechanical, chemical and industrial engineers working in the field of heat transfer, or in graduate schools or industry




The Exergy Method of Thermal Plant Analysis


Book Description

The Exergy Method of Thermal Plant Analysis aims to discuss the history, related concepts, applications, and development of the Exergy Method - analysis technique that uses the Second Law of Thermodynamics as the basis of evaluation of thermodynamic loss. The book, after an introduction to thermodynamics and its related concepts, covers concepts related to exergy, such as physical and chemical exergy, exergy concepts for a control method and a closed-system analysis, the exergy analysis of simple processes, and the thermocentric applications of exergy. A seven-part appendix is also included. Appendices A-D covers miscellaneous information on exergy, and Appendix E features charts of thermodynamic properties. Appendix F is a glossary of terms, and Appendix G contains the list of references. The text is recommended for physicists who would like to know more about the Exergy Method, its underlying principles, and its applications not only in thermal plant analysis but also in certain areas.




Modeling, Assessment, and Optimization of Energy Systems


Book Description

Modelling, Assessment, and Optimization of Energy Systems provides comprehensive methodologies for the thermal modelling of energy systems based on thermodynamic, exergoeconomic and exergoenviromental approaches. It provides advanced analytical approaches, assessment criteria and the methodologies to obtain analytical expressions from the experimental data. The concept of single-objective and multi-objective optimization with application to energy systems is provided, along with decision-making tools for multi-objective problems, multi-criteria problems, for simplifying the optimization of large energy systems, and for exergoeconomic improvement integrated with a simulator EIS method. This book provides a comprehensive methodology for modeling, assessment, improvement of any energy system with guidance, and practical examples that provide detailed insights for energy engineering, mechanical engineering, chemical engineering and researchers in the field of analysis and optimization of energy systems. - Offers comprehensive analytical tools for the modeling and simulation of energy systems with applications for decision-making tools - Provides methodologies to obtain analytical models of energy systems for experimental data - Covers decision-making tools in multi-objective problems




Comprehensive Energy Systems


Book Description

Comprehensive Energy Systems, Seven Volume Set provides a unified source of information covering the entire spectrum of energy, one of the most significant issues humanity has to face. This comprehensive book describes traditional and novel energy systems, from single generation to multi-generation, also covering theory and applications. In addition, it also presents high-level coverage on energy policies, strategies, environmental impacts and sustainable development. No other published work covers such breadth of topics in similar depth. High-level sections include Energy Fundamentals, Energy Materials, Energy Production, Energy Conversion, and Energy Management. Offers the most comprehensive resource available on the topic of energy systems Presents an authoritative resource authored and edited by leading experts in the field Consolidates information currently scattered in publications from different research fields (engineering as well as physics, chemistry, environmental sciences and economics), thus ensuring a common standard and language




CRC Handbook of Thermal Engineering


Book Description

The CRC Handbook of Thermal Engineering, Second Edition, is a fully updated version of this respected reference work, with chapters written by leading experts. Its first part covers basic concepts, equations and principles of thermodynamics, heat transfer, and fluid dynamics. Following that is detailed coverage of major application areas, such as bioengineering, energy-efficient building systems, traditional and renewable energy sources, food processing, and aerospace heat transfer topics. The latest numerical and computational tools, microscale and nanoscale engineering, and new complex-structured materials are also presented. Designed for easy reference, this new edition is a must-have volume for engineers and researchers around the globe.




32nd European Symposium on Computer Aided Process Engineering


Book Description

32nd European Symposium on Computer Aided Process Engineering: ESCAPE-32 contains the papers presented at the 32nd European Symposium of Computer Aided Process Engineering (ESCAPE) event held in Toulouse, France. It is a valuable resource for chemical engineers, chemical process engineers, researchers in industry and academia, students and consultants for chemical industries who work in process development and design. - Presents findings and discussions from the 32nd European Symposium of Computer Aided Process Engineering (ESCAPE) event