Experimental and Analytical Determination of Integrated Airframe Nozzle Performance


Book Description

An experimental and analytical investigation of the installed thrust and drag of various isolated nozzle and twin-nozzle/aftbody configurations indicated that empirical correlations provide the best means of predicting aft- end performance, especially for the early stages of the aircraft design. Both subsonic and transonic isolated nozzle drag data were correlated using IMS (integral mean slope) as the geometric parameter. A correlation of twin-nozzle/aftbody drag data at subsonic and transonic speeds was developed by combining Spreiter's transonic similarity parameters with the IMS of the equivalent body of revolution. A correlation of inviscid MOC pressure drag, achieved through use of IMS combined with similarity parameters obtained from linearized supersonic flow theory, provided an accurate and rapid means of estimating drag for arbitrary axisymmetric boattail contours at supersonic speeds. Twin-nozzle/aftbody drag data at supersonic speeds was correlated with the equivalent body drag obtained from the axisymmetric MOC correlation. Improved thrust and drag performance was obtained by modifying the aft-end design of five selected aircraft configurations. The rationale for these modifications was derived from design guidelines and criteria developed during the program. Improvements in mission radius for a fixed takeoff gross weight aircraft were obtained, in general, by utilizing convergent-divergent nozzles, a horizontal wedge interfairing with the trailing edge terminating at the exit plane of the nozzles, a single vertical stabilizer, and a narrow lateral nozzle spacing.







NASA Technical Note


Book Description










Experimental and Analytical Determination of Integrated Airframe Nozzle Performance


Book Description

A computer program has been developed for predicting twin-nozzle/aftbody drag and internal nozzle performance for fighter type aircraft having twin buried engines and dual nozzles. The program is capable of generating the installed thrust-minus-drag data required for conducting mission analysis studies of aircraft of this type. The configuration variables which can be analyzed include (1) nozzle type (convergent flap and iris, convergent-divergent with and without secondary flow, and shrouded and unshrouded plug), (2) nozzle lateral spacing, (3) interfairing type (horizontal and vertical wedge), (4) interfairing length, and (5) vertical stabilizer type (single and twin). The performance prediction methods incorporated in the program are based almost entirely on empirical correlations. Specifically, correlations used in conjunction with one-dimensional flow relationships are employed for the prediction of the nozzle thrust and discharge coefficients, and correlations of the test data obtained during the contracted effort are employed for prediction of the aft-end drag. The prediction methods account for the effects of nozzle pressure ratio and flow separation on both internal and external nozzle surfaces. This manual describes the operation of the computer program in terms of program input requirements, performance prediction methods, and output format and includes a presentation of sample input/output cases and a complete computer listing of the program. The program has been developed for use on the CDC 6600 computer.










Exhaust Plume Temperature Effects on Nozzle Afterbody Performance Over the Transonic Mach Number Range


Book Description

Results of an experimental and analytical research investigation on nozzle/afterbody drag are presented. Experimental afterbody (and boattail) drag coefficients and pressure distributions are discussed for an isolated, strut-mounted nozzle/afterbody model for the Mach number range from 0.6 to 1.5. Some data are also given for free-stream unit Reynolds numbers from one million to approximately four million per foot. The experimental data were obtained for the basic model with an air-cooled and a water-cooled Ethylene/air combustor to provide hot-jet duplication as well as cold-jet simulation. The temperature of the nozzle exhaust gas was varied from 530R (burner-off) to approximately 2500R for several nozzle pressure ratios from jet-off to those corresponding to a moderately under-expanded exhaust plum. The initial series of experiments was conducted with the air-cooled combustors, and the effect of jet temperature on afterbody drag was somewhat masked by the effects of the secondary airflow from the cooling air. The general trend, however, shows a decreasing afterbody drag with increasing exhaust gas temperature and with decreasing secondary airflow at a fixed nozzle pressure ratio. (Modified author abstract).