Modeling Engine Spray and Combustion Processes


Book Description

The utilization of mathematical models to numerically describe the performance of internal combustion engines is of great significance in the development of new and improved engines. Today, such simulation models can already be viewed as standard tools, and their importance is likely to increase further as available com puter power is expected to increase and the predictive quality of the models is constantly enhanced. This book describes and discusses the most widely used mathematical models for in-cylinder spray and combustion processes, which are the most important subprocesses affecting engine fuel consumption and pollutant emissions. The relevant thermodynamic, fluid dynamic and chemical principles are summarized, and then the application of these principles to the in-cylinder processes is ex plained. Different modeling approaches for the each subprocesses are compared and discussed with respect to the governing model assumptions and simplifica tions. Conclusions are drawn as to which model approach is appropriate for a specific type of problem in the development process of an engine. Hence, this book may serve both as a graduate level textbook for combustion engineering stu dents and as a reference for professionals employed in the field of combustion en gine modeling. The research necessary for this book was carried out during my employment as a postdoctoral scientist at the Institute of Technical Combustion (ITV) at the Uni versity of Hannover, Germany and at the Engine Research Center (ERC) at the University of Wisconsin-Madison, USA.




Proceedings of the 1st International Conference on Fluid, Thermal and Energy Systems


Book Description

This book comprises the proceedings of the 1st International Conference on Fluid, Thermal and Energy Systems. The contents of this book focus on phase change heat transfer, advanced energy systems, separated flows, turbulence and multi-phase modeling, computational fluid flow and heat transfer, thermal energy storage systems, integrated energy systems, nuclear thermal hydraulics, heat transfer in nanofluids, etc. This book serves as a useful reference to researchers, academicians, and students interested in the broad field of thermo-fluid science and engineering.




Diesel Engine Reference Book


Book Description

A comprehensive reference work covering the design and applications of diesel engines of all sizes. The text uses easily understood language and a practical approach to explore aspects of diesel engineering such as thermodynamics modelling, long-term use, applications and condition monitoring.




Proceedings of IncoME-V & CEPE Net-2020


Book Description

This volume gathers the latest advances, innovations and applications in the field of condition monitoring, plant maintenance and reliability, as presented by leading international researchers and engineers at the 5th International Conference on Maintenance Engineering and the 2020 Annual Conference of the Centre for Efficiency and Performance Engineering Network (IncoME-V & CEPE Net-2020), held in Zhuhai, China on October 23-25, 2020. Topics include vibro-acoustics monitoring, condition-based maintenance, sensing and instrumentation, machine health monitoring, maintenance auditing and organization, non-destructive testing, reliability, asset management, condition monitoring, life-cycle cost optimisation, prognostics and health management, maintenance performance measurement, manufacturing process monitoring, and robot-based monitoring and diagnostics. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that will spur novel research directions and foster new multidisciplinary collaborations.




Fuel Systems for IC Engines


Book Description

This book presents the papers from the latest conference in this successful series on fuel injection systems for internal combustion engines. It is vital for the automotive industry to continue to meet the demands of the modern environmental agenda. In order to excel, manufacturers must research and develop fuel systems that guarantee the best engine performance, ensuring minimal emissions and maximum profit. The papers from this unique conference focus on the latest technology for state-of-the-art system design, characterisation, measurement, and modelling, addressing all technological aspects of diesel and gasoline fuel injection systems. Topics range from fundamental fuel spray theory, component design, to effects on engine performance, fuel economy and emissions. - Presents the papers from the IMechE conference on fuel injection systems for internal combustion engines - Papers focus on the latest technology for state-of-the-art system design, characterisation, measurement and modelling; addressing all technological aspects of diesel and gasoline fuel injection systems - Topics range from fundamental fuel spray theory and component design to effects on engine performance, fuel economy and emissions




Numerical and Experimental Investigation of Water Introduction Into DI Diesel Engine Combustion


Book Description

Im vorliegenden Band 3/2008 berichtet Herr Eckert uber die Ergebnisse aus Untersuchungen zur Partikel- und Stickoxidminimierung bei Dieselmotoren durch Wassereinbringung. Das primare Ziel ist dabei die innermotorische Reduzierung der thermischen Stickoxidbildung. Es sind unterschiedliche Methoden der wassereinbringung in den dieselmotorischen Verbrennungsprozess moglich; beispielsweise die Einspritzung von Wasser in das Ansaugsystem, eine direkte Einspritzung von Wasser in den Brennraum sowie die Wassereinbringung mit Diesel- Wasser Emulsionen. Diese Massnahmen sind unter anderem bei dieselmotoren, die zumindest teilweise mit Schwerol betrieben werden, besonders interessant, da dort klassische Methoden zur Schadstoffreduktion, wie z.B. Abgasruckfuhrung oder Abgasnachbehandlung, nur mit erheblichem Aufwand eingesetzt werden konnen.




Automotive Spark-Ignited Direct-Injection Gasoline Engines


Book Description

The process of fuel injection, spray atomization and vaporization, charge cooling, mixture preparation and the control of in-cylinder air motion are all being actively researched and this work is reviewed in detail and analyzed. The new technologies such as high-pressure, common-rail, gasoline injection systems and swirl-atomizing gasoline fuel injections are discussed in detail, as these technologies, along with computer control capabilities, have enabled the current new examination of an old objective; the direct-injection, stratified-charge (DISC), gasoline engine. The prior work on DISC engines that is relevant to current GDI engine development is also reviewed and discussed. The fuel economy and emission data for actual engine configurations have been obtained and assembled for all of the available GDI literature, and are reviewed and discussed in detail. The types of GDI engines are arranged in four classifications of decreasing complexity, and the advantages and disadvantages of each class are noted and explained. Emphasis is placed upon consensus trends and conclusions that are evident when taken as a whole; thus the GDI researcher is informed regarding the degree to which engine volumetric efficiency and compression ratio can be increased under optimized conditions, and as to the extent to which unburned hydrocarbon (UBHC), NOx and particulate emissions can be minimized for specific combustion strategies. The critical area of GDI fuel injector deposits and the associated effect on spray geometry and engine performance degradation are reviewed, and important system guidelines for minimizing deposition rates and deposit effects are presented. The capabilities and limitations of emission control techniques and after treatment hardware are reviewed in depth, and a compilation and discussion of areas of consensus on attaining European, Japanese and North American emission standards presented. All known research, prototype and production GDI engines worldwide are reviewed as to performance, emissions and fuel economy advantages, and for areas requiring further development. The engine schematics, control diagrams and specifications are compiled, and the emission control strategies are illustrated and discussed. The influence of lean-NOx catalysts on the development of late-injection, stratified-charge GDI engines is reviewed, and the relative merits of lean-burn, homogeneous, direct-injection engines as an option requiring less control complexity are analyzed.




Advances in Materials, Mechanics and Manufacturing II


Book Description

This book reports on innovative materials research with a special emphasis on methods, modeling, and simulation tools for analyzing material behavior, emerging materials, and composites, and their applications in the field of manufacturing. Chapters are based on contributions to the third International Conference on Advanced Materials Mechanics and Manufacturing, A3M2021, organized by the Laboratory of Mechanics, Modeling, and Manufacturing (LA2MP) of the National School of Engineers of Sfax, Tunisia and held online on March 25-27, 2021. They cover a variety of topics, spanning from experimental analysis of material plasticity and fatigue, numerical simulation of material behavior, and optimization of manufacturing processes, such as cutting and injection, among others. Offering a good balance of fundamental research and industrially relevant findings, they provide researchers and professionals with a timely snapshot of and extensive information on current developments in the field and a source of inspiration for future research and collaboration.




Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction


Book Description

This book provides a comprehensive treatment of the cavitation erosion phenomenon and state-of-the-art research in the field. It is divided into two parts. Part 1 consists of seven chapters, offering a wide range of computational and experimental approaches to cavitation erosion. It includes a general introduction to cavitation and cavitation erosion a detailed description of facilities and measurement techniques commonly used in cavitation erosion studies, an extensive presentation of various stages of cavitation damage (including incubation and mass loss) and insights into the contribution of computational methods to the analysis of both fluid and material behavior. The proposed approach is based on a detailed description of impact loads generated by collapsing cavitation bubbles and a physical analysis of the material response to these loads. Part 2 is devoted to a selection of nine papers presented at the International Workshop on Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction (Grenoble, France, 1-2 March 2011) representing the forefront of research on cavitation erosion. Innovative numerical and experimental investigations illustrate the most advanced breakthroughs in cavitation erosion research.




Proceedings of China SAE Congress 2019: Selected Papers


Book Description

These proceedings gather outstanding papers presented at the China SAE Congress 2019. Featuring contributions mainly from China, the biggest carmaker as well as most dynamic car market in the world, the book covers a wide range of automotive topics and the latest technical advances in the industry. Many of the approaches included can help technicians to solve practical problems that affect their daily work. In addition, the book offers valuable technical support to engineers, researchers and postgraduate students in the field of automotive engineering.